Category.Product complete step2

This commit is contained in:
Andrea Vezzosi 2018-04-13 14:35:54 +02:00
parent 6023a49da6
commit 5afa835787

View file

@ -125,10 +125,11 @@ module Try0 {a b : Level} { : Category a b}
private
open RawCategory raw
propEqs : {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
propEqs : {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
(xy : .Arrow X Y) isProp ( [ ya xy ] xa × [ yb xy ] xb)
propEqs xs = propSig (.arrowsAreSets _ _) (\ _ .arrowsAreSets _ _)
propEqs xs = propSig (.arrowsAreSets _ _) (\ _ .arrowsAreSets _ _)
private
isAssociative : IsAssociative
isAssociative {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
@ -259,8 +260,8 @@ module Try0 {a b : Level} { : Category a b}
{ fst = funExt (λ x lemSig
(λ x propSig prop0 (λ _ prop1))
_ _
(Σ≡ {!!} (.propIsomorphism _ _ _)))
; snd = funExt (λ{ (f , _) lemSig propIsomorphism _ _ {!refl!}})
(Σ≡ refl (.propIsomorphism _ _ _)))
; snd = funExt (λ{ (f , _) lemSig propIsomorphism _ _ (Σ≡ refl (propEqs _ _ _))})
}
where
prop0 : {x} isProp (PathP (λ i .Arrow (.isoToId x i) A) xa ya)