Category.Product complete step2
This commit is contained in:
parent
6023a49da6
commit
5afa835787
|
@ -125,10 +125,11 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
private
|
private
|
||||||
open RawCategory raw
|
open RawCategory raw
|
||||||
|
|
||||||
propEqs : ∀ {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
|
propEqs : ∀ {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
|
||||||
→ (xy : ℂ.Arrow X Y) → isProp (ℂ [ ya ∘ xy ] ≡ xa × ℂ [ yb ∘ xy ] ≡ xb)
|
→ (xy : ℂ.Arrow X Y) → isProp (ℂ [ ya ∘ xy ] ≡ xa × ℂ [ yb ∘ xy ] ≡ xb)
|
||||||
propEqs xs = propSig (ℂ.arrowsAreSets _ _) (\ _ → ℂ.arrowsAreSets _ _)
|
propEqs xs = propSig (ℂ.arrowsAreSets _ _) (\ _ → ℂ.arrowsAreSets _ _)
|
||||||
|
|
||||||
|
private
|
||||||
isAssociative : IsAssociative
|
isAssociative : IsAssociative
|
||||||
isAssociative {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
|
isAssociative {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
|
||||||
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
|
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
|
||||||
|
@ -259,8 +260,8 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
{ fst = funExt (λ x → lemSig
|
{ fst = funExt (λ x → lemSig
|
||||||
(λ x → propSig prop0 (λ _ → prop1))
|
(λ x → propSig prop0 (λ _ → prop1))
|
||||||
_ _
|
_ _
|
||||||
(Σ≡ {!!} (ℂ.propIsomorphism _ _ _)))
|
(Σ≡ refl (ℂ.propIsomorphism _ _ _)))
|
||||||
; snd = funExt (λ{ (f , _) → lemSig propIsomorphism _ _ {!refl!}})
|
; snd = funExt (λ{ (f , _) → lemSig propIsomorphism _ _ (Σ≡ refl (propEqs _ _ _))})
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
prop0 : ∀ {x} → isProp (PathP (λ i → ℂ.Arrow (ℂ.isoToId x i) A) xa ya)
|
prop0 : ∀ {x} → isProp (PathP (λ i → ℂ.Arrow (ℂ.isoToId x i) A) xa ya)
|
||||||
|
|
Loading…
Reference in a new issue