Category.Product complete step2
This commit is contained in:
parent
6023a49da6
commit
5afa835787
|
@ -129,6 +129,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
→ (xy : ℂ.Arrow X Y) → isProp (ℂ [ ya ∘ xy ] ≡ xa × ℂ [ yb ∘ xy ] ≡ xb)
|
||||
propEqs xs = propSig (ℂ.arrowsAreSets _ _) (\ _ → ℂ.arrowsAreSets _ _)
|
||||
|
||||
private
|
||||
isAssociative : IsAssociative
|
||||
isAssociative {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
|
||||
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
|
||||
|
@ -259,8 +260,8 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
{ fst = funExt (λ x → lemSig
|
||||
(λ x → propSig prop0 (λ _ → prop1))
|
||||
_ _
|
||||
(Σ≡ {!!} (ℂ.propIsomorphism _ _ _)))
|
||||
; snd = funExt (λ{ (f , _) → lemSig propIsomorphism _ _ {!refl!}})
|
||||
(Σ≡ refl (ℂ.propIsomorphism _ _ _)))
|
||||
; snd = funExt (λ{ (f , _) → lemSig propIsomorphism _ _ (Σ≡ refl (propEqs _ _ _))})
|
||||
}
|
||||
where
|
||||
prop0 : ∀ {x} → isProp (PathP (λ i → ℂ.Arrow (ℂ.isoToId x i) A) xa ya)
|
||||
|
|
Loading…
Reference in a new issue