Make progress with univalence in product-category
This commit is contained in:
parent
7fcd8e631a
commit
5bbb40b664
|
@ -250,8 +250,31 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
≈ ((X , xa , xb) ≅ (Y , ya , yb))
|
≈ ((X , xa , xb) ≅ (Y , ya , yb))
|
||||||
step2
|
step2
|
||||||
= ( λ{ ((f , f~ , inv-f) , p , q)
|
= ( λ{ ((f , f~ , inv-f) , p , q)
|
||||||
→ ( f , {!ℂ.9-1-9'!} , {!!})
|
→
|
||||||
, ( f~ , {!!} , {!!})
|
let
|
||||||
|
r : X ≡ Y
|
||||||
|
r = ℂ.isoToId (f , f~ , inv-f)
|
||||||
|
r-arrow : (ℂ.Arrow X A) ≡ (ℂ.Arrow Y A)
|
||||||
|
r-arrow i = ℂ.Arrow (r i) A
|
||||||
|
t : coe r-arrow xa ≡ ℂ.identity ℂ.<<< xa ℂ.<<< f~
|
||||||
|
t = {!? ≡ ?!}
|
||||||
|
lem : ∀ {x} → ℂ.idToIso _ _ (ℂ.isoToId x) ≡ x
|
||||||
|
lem {x} i = snd ℂ.inverse-from-to-iso' i x
|
||||||
|
h : ya ≡ xa ℂ.<<< f~
|
||||||
|
h = begin
|
||||||
|
ya ≡⟨ {!!} ⟩
|
||||||
|
coe r-arrow xa
|
||||||
|
≡⟨ ℂ.9-1-9 r refl xa ⟩
|
||||||
|
fst (ℂ.idToIso _ _ refl) ℂ.<<< xa ℂ.<<< fst (snd (ℂ.idToIso _ _ r))
|
||||||
|
≡⟨ cong (λ φ → φ ℂ.<<< xa ℂ.<<< fst (snd (ℂ.idToIso _ _ r))) (subst-neutral {P = λ x → ℂ.Arrow x x}) ⟩
|
||||||
|
ℂ.identity ℂ.<<< xa ℂ.<<< fst (snd (ℂ.idToIso _ _ r))
|
||||||
|
≡⟨ cong (λ φ → ℂ.identity ℂ.<<< xa ℂ.<<< φ) (cong (λ x → (fst (snd x))) lem) ⟩
|
||||||
|
ℂ.identity ℂ.<<< xa ℂ.<<< f~
|
||||||
|
≡⟨ cong (ℂ._<<< f~) ℂ.leftIdentity ⟩
|
||||||
|
xa ℂ.<<< f~ ∎
|
||||||
|
in
|
||||||
|
( f , {!h!} , {!!})
|
||||||
|
, ( f~ , sym h , {!!})
|
||||||
, lemA (fst inv-f)
|
, lemA (fst inv-f)
|
||||||
, lemA (snd inv-f)
|
, lemA (snd inv-f)
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue