Make argument to presheaf explicit
This commit is contained in:
parent
059c74b687
commit
5c3616bca5
|
@ -80,19 +80,20 @@ module _ {ℓ : Level} where
|
|||
SetsHasProducts : HasProducts 𝓢
|
||||
SetsHasProducts = record { product = product }
|
||||
|
||||
module _ {ℓa ℓb : Level} where
|
||||
module _ (ℂ : Category ℓa ℓb) where
|
||||
-- Covariant Presheaf
|
||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
-- Covariant Presheaf
|
||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||
|
||||
-- Contravariant Presheaf
|
||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||
-- Contravariant Presheaf
|
||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||
|
||||
open Category ℂ
|
||||
|
||||
-- The "co-yoneda" embedding.
|
||||
representable : {ℂ : Category ℓa ℓb} → Category.Object ℂ → Representable ℂ
|
||||
representable {ℂ = ℂ} A = record
|
||||
representable : Category.Object ℂ → Representable
|
||||
representable A = record
|
||||
{ raw = record
|
||||
{ func* = λ B → ℂ [ A , B ] , arrowsAreSets
|
||||
; func→ = ℂ [_∘_]
|
||||
|
@ -102,12 +103,10 @@ module _ {ℓa ℓb : Level} where
|
|||
; isDistributive = funExt λ x → sym isAssociative
|
||||
}
|
||||
}
|
||||
where
|
||||
open Category ℂ
|
||||
|
||||
-- Alternate name: `yoneda`
|
||||
presheaf : {ℂ : Category ℓa ℓb} → Category.Object (opposite ℂ) → Presheaf ℂ
|
||||
presheaf {ℂ = ℂ} B = record
|
||||
presheaf : Category.Object (opposite ℂ) → Presheaf
|
||||
presheaf B = record
|
||||
{ raw = record
|
||||
{ func* = λ A → ℂ [ A , B ] , arrowsAreSets
|
||||
; func→ = λ f g → ℂ [ g ∘ f ]
|
||||
|
@ -117,5 +116,3 @@ module _ {ℓa ℓb : Level} where
|
|||
; isDistributive = funExt λ x → isAssociative
|
||||
}
|
||||
}
|
||||
where
|
||||
open Category ℂ
|
||||
|
|
|
@ -26,7 +26,7 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} (unprovable : IsCategory (RawCat
|
|||
open Fun (opposite ℂ) 𝓢
|
||||
Catℓ : Category _ _
|
||||
Catℓ = Cat.Cat ℓ ℓ unprovable
|
||||
prshf = presheaf {ℂ = ℂ}
|
||||
prshf = presheaf ℂ
|
||||
module ℂ = Category ℂ
|
||||
|
||||
_⇑_ : (A B : Category.Object Catℓ) → Category.Object Catℓ
|
||||
|
|
Loading…
Reference in a new issue