Make argument to presheaf explicit
This commit is contained in:
parent
059c74b687
commit
5c3616bca5
|
@ -80,19 +80,20 @@ module _ {ℓ : Level} where
|
||||||
SetsHasProducts : HasProducts 𝓢
|
SetsHasProducts : HasProducts 𝓢
|
||||||
SetsHasProducts = record { product = product }
|
SetsHasProducts = record { product = product }
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} where
|
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
module _ (ℂ : Category ℓa ℓb) where
|
-- Covariant Presheaf
|
||||||
-- Covariant Presheaf
|
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
|
||||||
|
|
||||||
-- Contravariant Presheaf
|
-- Contravariant Presheaf
|
||||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||||
|
|
||||||
|
open Category ℂ
|
||||||
|
|
||||||
-- The "co-yoneda" embedding.
|
-- The "co-yoneda" embedding.
|
||||||
representable : {ℂ : Category ℓa ℓb} → Category.Object ℂ → Representable ℂ
|
representable : Category.Object ℂ → Representable
|
||||||
representable {ℂ = ℂ} A = record
|
representable A = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ func* = λ B → ℂ [ A , B ] , arrowsAreSets
|
{ func* = λ B → ℂ [ A , B ] , arrowsAreSets
|
||||||
; func→ = ℂ [_∘_]
|
; func→ = ℂ [_∘_]
|
||||||
|
@ -102,12 +103,10 @@ module _ {ℓa ℓb : Level} where
|
||||||
; isDistributive = funExt λ x → sym isAssociative
|
; isDistributive = funExt λ x → sym isAssociative
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
|
||||||
open Category ℂ
|
|
||||||
|
|
||||||
-- Alternate name: `yoneda`
|
-- Alternate name: `yoneda`
|
||||||
presheaf : {ℂ : Category ℓa ℓb} → Category.Object (opposite ℂ) → Presheaf ℂ
|
presheaf : Category.Object (opposite ℂ) → Presheaf
|
||||||
presheaf {ℂ = ℂ} B = record
|
presheaf B = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ func* = λ A → ℂ [ A , B ] , arrowsAreSets
|
{ func* = λ A → ℂ [ A , B ] , arrowsAreSets
|
||||||
; func→ = λ f g → ℂ [ g ∘ f ]
|
; func→ = λ f g → ℂ [ g ∘ f ]
|
||||||
|
@ -117,5 +116,3 @@ module _ {ℓa ℓb : Level} where
|
||||||
; isDistributive = funExt λ x → isAssociative
|
; isDistributive = funExt λ x → isAssociative
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
|
||||||
open Category ℂ
|
|
||||||
|
|
|
@ -26,7 +26,7 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} (unprovable : IsCategory (RawCat
|
||||||
open Fun (opposite ℂ) 𝓢
|
open Fun (opposite ℂ) 𝓢
|
||||||
Catℓ : Category _ _
|
Catℓ : Category _ _
|
||||||
Catℓ = Cat.Cat ℓ ℓ unprovable
|
Catℓ = Cat.Cat ℓ ℓ unprovable
|
||||||
prshf = presheaf {ℂ = ℂ}
|
prshf = presheaf ℂ
|
||||||
module ℂ = Category ℂ
|
module ℂ = Category ℂ
|
||||||
|
|
||||||
_⇑_ : (A B : Category.Object Catℓ) → Category.Object Catℓ
|
_⇑_ : (A B : Category.Object Catℓ) → Category.Object Catℓ
|
||||||
|
|
Loading…
Reference in a new issue