Rename assoc to isAssociative
This commit is contained in:
parent
852056cc44
commit
5cbc409770
|
@ -43,8 +43,8 @@ module _ (ℓ ℓ' : Level) where
|
||||||
}
|
}
|
||||||
private
|
private
|
||||||
open RawCategory RawCat
|
open RawCategory RawCat
|
||||||
assoc : IsAssociative
|
isAssociative : IsAssociative
|
||||||
assoc {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
isAssociative {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||||
-- TODO: Rename `ident'` to `ident` after changing how names are exposed in Functor.
|
-- TODO: Rename `ident'` to `ident` after changing how names are exposed in Functor.
|
||||||
ident' : IsIdentity identity
|
ident' : IsIdentity identity
|
||||||
ident' = ident-r , ident-l
|
ident' = ident-r , ident-l
|
||||||
|
@ -96,7 +96,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
postulate univalent : Univalence.Univalent :rawProduct: ident'
|
postulate univalent : Univalence.Univalent :rawProduct: ident'
|
||||||
instance
|
instance
|
||||||
:isCategory: : IsCategory :rawProduct:
|
:isCategory: : IsCategory :rawProduct:
|
||||||
IsCategory.assoc :isCategory: = Σ≡ C.assoc D.assoc
|
IsCategory.isAssociative :isCategory: = Σ≡ C.isAssociative D.isAssociative
|
||||||
IsCategory.ident :isCategory: = ident'
|
IsCategory.ident :isCategory: = ident'
|
||||||
IsCategory.arrowIsSet :isCategory: = issSet
|
IsCategory.arrowIsSet :isCategory: = issSet
|
||||||
IsCategory.univalent :isCategory: = univalent
|
IsCategory.univalent :isCategory: = univalent
|
||||||
|
@ -288,15 +288,15 @@ module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
||||||
𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
||||||
𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
||||||
≡⟨ sym assoc ⟩
|
≡⟨ sym isAssociative ⟩
|
||||||
𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
||||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) assoc ⟩
|
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) isAssociative ⟩
|
||||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ func→ H f ∘ η A ] ∘ θ A ] ]
|
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ func→ H f ∘ η A ] ∘ θ A ] ]
|
||||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
||||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ η B ∘ func→ G f ] ∘ θ A ] ]
|
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ η B ∘ func→ G f ] ∘ θ A ] ]
|
||||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (sym assoc) ⟩
|
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (sym isAssociative) ⟩
|
||||||
𝔻 [ func→ H g ∘ 𝔻 [ η B ∘ 𝔻 [ func→ G f ∘ θ A ] ] ]
|
𝔻 [ func→ H g ∘ 𝔻 [ η B ∘ 𝔻 [ func→ G f ∘ θ A ] ] ]
|
||||||
≡⟨ assoc ⟩
|
≡⟨ isAssociative ⟩
|
||||||
𝔻 [ 𝔻 [ func→ H g ∘ η B ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
𝔻 [ 𝔻 [ func→ H g ∘ η B ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ func→ G f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ func→ G f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
||||||
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||||
|
|
|
@ -25,8 +25,8 @@ module _ (ℓa ℓb : Level) where
|
||||||
c ⟨ g ∘ f ⟩ = _∘_ {c = c} g f
|
c ⟨ g ∘ f ⟩ = _∘_ {c = c} g f
|
||||||
|
|
||||||
module _ {A B C D : Obj'} {f : Arr A B} {g : Arr B C} {h : Arr C D} where
|
module _ {A B C D : Obj'} {f : Arr A B} {g : Arr B C} {h : Arr C D} where
|
||||||
assoc : (D ⟨ h ∘ C ⟨ g ∘ f ⟩ ⟩) ≡ D ⟨ D ⟨ h ∘ g ⟩ ∘ f ⟩
|
isAssociative : (D ⟨ h ∘ C ⟨ g ∘ f ⟩ ⟩) ≡ D ⟨ D ⟨ h ∘ g ⟩ ∘ f ⟩
|
||||||
assoc = Σ≡ refl refl
|
isAssociative = Σ≡ refl refl
|
||||||
|
|
||||||
module _ {A B : Obj'} {f : Arr A B} where
|
module _ {A B : Obj'} {f : Arr A B} where
|
||||||
ident : B ⟨ f ∘ one ⟩ ≡ f × B ⟨ one {B} ∘ f ⟩ ≡ f
|
ident : B ⟨ f ∘ one ⟩ ≡ f × B ⟨ one {B} ∘ f ⟩ ≡ f
|
||||||
|
@ -44,7 +44,7 @@ module _ (ℓa ℓb : Level) where
|
||||||
instance
|
instance
|
||||||
isCategory : IsCategory RawFam
|
isCategory : IsCategory RawFam
|
||||||
isCategory = record
|
isCategory = record
|
||||||
{ assoc = λ {A} {B} {C} {D} {f} {g} {h} → assoc {D = D} {f} {g} {h}
|
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {D = D} {f} {g} {h}
|
||||||
; ident = λ {A} {B} {f} → ident {A} {B} {f = f}
|
; ident = λ {A} {B} {f} → ident {A} {B} {f = f}
|
||||||
; arrowIsSet = {!!}
|
; arrowIsSet = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
|
|
@ -26,16 +26,16 @@ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
open Category ℂ
|
open Category ℂ
|
||||||
|
|
||||||
private
|
private
|
||||||
p-assoc : {A B C D : Object} {r : Path Arrow A B} {q : Path Arrow B C} {p : Path Arrow C D}
|
p-isAssociative : {A B C D : Object} {r : Path Arrow A B} {q : Path Arrow B C} {p : Path Arrow C D}
|
||||||
→ p ++ (q ++ r) ≡ (p ++ q) ++ r
|
→ p ++ (q ++ r) ≡ (p ++ q) ++ r
|
||||||
p-assoc {r = r} {q} {empty} = refl
|
p-isAssociative {r = r} {q} {empty} = refl
|
||||||
p-assoc {A} {B} {C} {D} {r = r} {q} {cons x p} = begin
|
p-isAssociative {A} {B} {C} {D} {r = r} {q} {cons x p} = begin
|
||||||
cons x p ++ (q ++ r) ≡⟨ cong (cons x) lem ⟩
|
cons x p ++ (q ++ r) ≡⟨ cong (cons x) lem ⟩
|
||||||
cons x ((p ++ q) ++ r) ≡⟨⟩
|
cons x ((p ++ q) ++ r) ≡⟨⟩
|
||||||
(cons x p ++ q) ++ r ∎
|
(cons x p ++ q) ++ r ∎
|
||||||
where
|
where
|
||||||
lem : p ++ (q ++ r) ≡ ((p ++ q) ++ r)
|
lem : p ++ (q ++ r) ≡ ((p ++ q) ++ r)
|
||||||
lem = p-assoc {r = r} {q} {p}
|
lem = p-isAssociative {r = r} {q} {p}
|
||||||
|
|
||||||
ident-r : ∀ {A} {B} {p : Path Arrow A B} → concatenate p empty ≡ p
|
ident-r : ∀ {A} {B} {p : Path Arrow A B} → concatenate p empty ≡ p
|
||||||
ident-r {p = empty} = refl
|
ident-r {p = empty} = refl
|
||||||
|
@ -57,7 +57,7 @@ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
}
|
}
|
||||||
RawIsCategoryFree : IsCategory RawFree
|
RawIsCategoryFree : IsCategory RawFree
|
||||||
RawIsCategoryFree = record
|
RawIsCategoryFree = record
|
||||||
{ assoc = λ { {f = f} {g} {h} → p-assoc {r = f} {g} {h}}
|
{ isAssociative = λ { {f = f} {g} {h} → p-isAssociative {r = f} {g} {h}}
|
||||||
; ident = ident-r , ident-l
|
; ident = ident-r , ident-l
|
||||||
; arrowIsSet = {!!}
|
; arrowIsSet = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
|
|
@ -84,11 +84,11 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
proj₁ ((θ , _) :⊕: (η , _)) = θ ∘nt η
|
proj₁ ((θ , _) :⊕: (η , _)) = θ ∘nt η
|
||||||
proj₂ ((θ , θNat) :⊕: (η , ηNat)) {A} {B} f = begin
|
proj₂ ((θ , θNat) :⊕: (η , ηNat)) {A} {B} f = begin
|
||||||
𝔻 [ (θ ∘nt η) B ∘ F.func→ f ] ≡⟨⟩
|
𝔻 [ (θ ∘nt η) B ∘ F.func→ f ] ≡⟨⟩
|
||||||
𝔻 [ 𝔻 [ θ B ∘ η B ] ∘ F.func→ f ] ≡⟨ sym assoc ⟩
|
𝔻 [ 𝔻 [ θ B ∘ η B ] ∘ F.func→ f ] ≡⟨ sym isAssociative ⟩
|
||||||
𝔻 [ θ B ∘ 𝔻 [ η B ∘ F.func→ f ] ] ≡⟨ cong (λ φ → 𝔻 [ θ B ∘ φ ]) (ηNat f) ⟩
|
𝔻 [ θ B ∘ 𝔻 [ η B ∘ F.func→ f ] ] ≡⟨ cong (λ φ → 𝔻 [ θ B ∘ φ ]) (ηNat f) ⟩
|
||||||
𝔻 [ θ B ∘ 𝔻 [ G.func→ f ∘ η A ] ] ≡⟨ assoc ⟩
|
𝔻 [ θ B ∘ 𝔻 [ G.func→ f ∘ η A ] ] ≡⟨ isAssociative ⟩
|
||||||
𝔻 [ 𝔻 [ θ B ∘ G.func→ f ] ∘ η A ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ η A ]) (θNat f) ⟩
|
𝔻 [ 𝔻 [ θ B ∘ G.func→ f ] ∘ η A ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ η A ]) (θNat f) ⟩
|
||||||
𝔻 [ 𝔻 [ H.func→ f ∘ θ A ] ∘ η A ] ≡⟨ sym assoc ⟩
|
𝔻 [ 𝔻 [ H.func→ f ∘ θ A ] ∘ η A ] ≡⟨ sym isAssociative ⟩
|
||||||
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
||||||
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
||||||
where
|
where
|
||||||
|
@ -130,9 +130,9 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
R = (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
R = (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
||||||
_g⊕f_ = _:⊕:_ {A} {B} {C}
|
_g⊕f_ = _:⊕:_ {A} {B} {C}
|
||||||
_h⊕g_ = _:⊕:_ {B} {C} {D}
|
_h⊕g_ = _:⊕:_ {B} {C} {D}
|
||||||
:assoc: : L ≡ R
|
:isAssociative: : L ≡ R
|
||||||
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
:isAssociative: = lemSig (naturalIsProp {F = A} {D})
|
||||||
L R (funExt (λ x → assoc))
|
L R (funExt (λ x → isAssociative))
|
||||||
where
|
where
|
||||||
open Category 𝔻
|
open Category 𝔻
|
||||||
|
|
||||||
|
@ -168,7 +168,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
instance
|
instance
|
||||||
:isCategory: : IsCategory RawFun
|
:isCategory: : IsCategory RawFun
|
||||||
:isCategory: = record
|
:isCategory: = record
|
||||||
{ assoc = λ {A B C D} → :assoc: {A} {B} {C} {D}
|
{ isAssociative = λ {A B C D} → :isAssociative: {A} {B} {C} {D}
|
||||||
; ident = λ {A B} → :ident: {A} {B}
|
; ident = λ {A B} → :ident: {A} {B}
|
||||||
; arrowIsSet = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
; arrowIsSet = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
|
|
@ -149,10 +149,10 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset
|
||||||
≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||||||
equi = fwd Cubical.FromStdLib., isequiv
|
equi = fwd Cubical.FromStdLib., isequiv
|
||||||
|
|
||||||
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
-- isAssociativec : Q + (R + S) ≡ (Q + R) + S
|
||||||
is-assoc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
is-isAssociative : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||||||
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||||||
is-assoc = equivToPath equi
|
is-isAssociative = equivToPath equi
|
||||||
|
|
||||||
RawRel : RawCategory (lsuc lzero) (lsuc lzero)
|
RawRel : RawCategory (lsuc lzero) (lsuc lzero)
|
||||||
RawRel = record
|
RawRel = record
|
||||||
|
@ -164,7 +164,7 @@ RawRel = record
|
||||||
|
|
||||||
RawIsCategoryRel : IsCategory RawRel
|
RawIsCategoryRel : IsCategory RawRel
|
||||||
RawIsCategoryRel = record
|
RawIsCategoryRel = record
|
||||||
{ assoc = funExt is-assoc
|
{ isAssociative = funExt is-isAssociative
|
||||||
; ident = funExt ident-l , funExt ident-r
|
; ident = funExt ident-l , funExt ident-r
|
||||||
; arrowIsSet = {!!}
|
; arrowIsSet = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
|
|
@ -25,7 +25,7 @@ module _ (ℓ : Level) where
|
||||||
_∘_ SetsRaw = Function._∘′_
|
_∘_ SetsRaw = Function._∘′_
|
||||||
|
|
||||||
SetsIsCategory : IsCategory SetsRaw
|
SetsIsCategory : IsCategory SetsRaw
|
||||||
assoc SetsIsCategory = refl
|
isAssociative SetsIsCategory = refl
|
||||||
proj₁ (ident SetsIsCategory) = funExt λ _ → refl
|
proj₁ (ident SetsIsCategory) = funExt λ _ → refl
|
||||||
proj₂ (ident SetsIsCategory) = funExt λ _ → refl
|
proj₂ (ident SetsIsCategory) = funExt λ _ → refl
|
||||||
arrowIsSet SetsIsCategory {B = (_ , s)} = setPi λ _ → s
|
arrowIsSet SetsIsCategory {B = (_ , s)} = setPi λ _ → s
|
||||||
|
@ -99,7 +99,7 @@ module _ {ℓa ℓb : Level} where
|
||||||
}
|
}
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
{ ident = funExt λ _ → proj₂ ident
|
{ ident = funExt λ _ → proj₂ ident
|
||||||
; distrib = funExt λ x → sym assoc
|
; distrib = funExt λ x → sym isAssociative
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
|
@ -114,7 +114,7 @@ module _ {ℓa ℓb : Level} where
|
||||||
}
|
}
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
{ ident = funExt λ x → proj₁ ident
|
{ ident = funExt λ x → proj₁ ident
|
||||||
; distrib = funExt λ x → assoc
|
; distrib = funExt λ x → isAssociative
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
|
|
|
@ -101,7 +101,7 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
||||||
open RawCategory ℂ
|
open RawCategory ℂ
|
||||||
open Univalence ℂ public
|
open Univalence ℂ public
|
||||||
field
|
field
|
||||||
assoc : IsAssociative
|
isAssociative : IsAssociative
|
||||||
ident : IsIdentity 𝟙
|
ident : IsIdentity 𝟙
|
||||||
arrowIsSet : ArrowsAreSets
|
arrowIsSet : ArrowsAreSets
|
||||||
univalent : Univalent ident
|
univalent : Univalent ident
|
||||||
|
@ -144,7 +144,7 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
geq = begin
|
geq = begin
|
||||||
g ≡⟨ sym (fst ident) ⟩
|
g ≡⟨ sym (fst ident) ⟩
|
||||||
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||||||
g ∘ (f ∘ g') ≡⟨ assoc ⟩
|
g ∘ (f ∘ g') ≡⟨ isAssociative ⟩
|
||||||
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
||||||
𝟙 ∘ g' ≡⟨ snd ident ⟩
|
𝟙 ∘ g' ≡⟨ snd ident ⟩
|
||||||
g' ∎
|
g' ∎
|
||||||
|
@ -181,7 +181,7 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
foo = pathJ P helper Y.ident ident
|
foo = pathJ P helper Y.ident ident
|
||||||
eqUni : U ident Y.univalent
|
eqUni : U ident Y.univalent
|
||||||
eqUni = foo Y.univalent
|
eqUni = foo Y.univalent
|
||||||
IC.assoc (done i) = propIsAssociative x X.assoc Y.assoc i
|
IC.isAssociative (done i) = propIsAssociative x X.isAssociative Y.isAssociative i
|
||||||
IC.ident (done i) = ident i
|
IC.ident (done i) = ident i
|
||||||
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
|
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
|
||||||
IC.univalent (done i) = eqUni i
|
IC.univalent (done i) = eqUni i
|
||||||
|
@ -216,7 +216,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
RawCategory._∘_ OpRaw = Function.flip _∘_
|
RawCategory._∘_ OpRaw = Function.flip _∘_
|
||||||
|
|
||||||
OpIsCategory : IsCategory OpRaw
|
OpIsCategory : IsCategory OpRaw
|
||||||
IsCategory.assoc OpIsCategory = sym assoc
|
IsCategory.isAssociative OpIsCategory = sym isAssociative
|
||||||
IsCategory.ident OpIsCategory = swap ident
|
IsCategory.ident OpIsCategory = swap ident
|
||||||
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
||||||
IsCategory.univalent OpIsCategory = {!!}
|
IsCategory.univalent OpIsCategory = {!!}
|
||||||
|
@ -242,7 +242,7 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
open IsCategory
|
open IsCategory
|
||||||
module IsCat = IsCategory (ℂ .isCategory)
|
module IsCat = IsCategory (ℂ .isCategory)
|
||||||
rawIsCat : (i : I) → IsCategory (rawOp i)
|
rawIsCat : (i : I) → IsCategory (rawOp i)
|
||||||
assoc (rawIsCat i) = IsCat.assoc
|
isAssociative (rawIsCat i) = IsCat.isAssociative
|
||||||
ident (rawIsCat i) = IsCat.ident
|
ident (rawIsCat i) = IsCat.ident
|
||||||
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
||||||
univalent (rawIsCat i) = IsCat.univalent
|
univalent (rawIsCat i) = IsCat.univalent
|
||||||
|
|
|
@ -19,9 +19,9 @@ module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object
|
||||||
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||||
g₀ ≡⟨ sym (proj₁ ident) ⟩
|
g₀ ≡⟨ sym (proj₁ ident) ⟩
|
||||||
g₀ ∘ 𝟙 ≡⟨ cong (_∘_ g₀) (sym right-inv) ⟩
|
g₀ ∘ 𝟙 ≡⟨ cong (_∘_ g₀) (sym right-inv) ⟩
|
||||||
g₀ ∘ (f ∘ f-) ≡⟨ assoc ⟩
|
g₀ ∘ (f ∘ f-) ≡⟨ isAssociative ⟩
|
||||||
(g₀ ∘ f) ∘ f- ≡⟨ cong (λ φ → φ ∘ f-) eq ⟩
|
(g₀ ∘ f) ∘ f- ≡⟨ cong (λ φ → φ ∘ f-) eq ⟩
|
||||||
(g₁ ∘ f) ∘ f- ≡⟨ sym assoc ⟩
|
(g₁ ∘ f) ∘ f- ≡⟨ sym isAssociative ⟩
|
||||||
g₁ ∘ (f ∘ f-) ≡⟨ cong (_∘_ g₁) right-inv ⟩
|
g₁ ∘ (f ∘ f-) ≡⟨ cong (_∘_ g₁) right-inv ⟩
|
||||||
g₁ ∘ 𝟙 ≡⟨ proj₁ ident ⟩
|
g₁ ∘ 𝟙 ≡⟨ proj₁ ident ⟩
|
||||||
g₁ ∎
|
g₁ ∎
|
||||||
|
@ -31,9 +31,9 @@ module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object
|
||||||
begin
|
begin
|
||||||
g₀ ≡⟨ sym (proj₂ ident) ⟩
|
g₀ ≡⟨ sym (proj₂ ident) ⟩
|
||||||
𝟙 ∘ g₀ ≡⟨ cong (λ φ → φ ∘ g₀) (sym left-inv) ⟩
|
𝟙 ∘ g₀ ≡⟨ cong (λ φ → φ ∘ g₀) (sym left-inv) ⟩
|
||||||
(f- ∘ f) ∘ g₀ ≡⟨ sym assoc ⟩
|
(f- ∘ f) ∘ g₀ ≡⟨ sym isAssociative ⟩
|
||||||
f- ∘ (f ∘ g₀) ≡⟨ cong (_∘_ f-) eq ⟩
|
f- ∘ (f ∘ g₀) ≡⟨ cong (_∘_ f-) eq ⟩
|
||||||
f- ∘ (f ∘ g₁) ≡⟨ assoc ⟩
|
f- ∘ (f ∘ g₁) ≡⟨ isAssociative ⟩
|
||||||
(f- ∘ f) ∘ g₁ ≡⟨ cong (λ φ → φ ∘ g₁) left-inv ⟩
|
(f- ∘ f) ∘ g₁ ≡⟨ cong (λ φ → φ ∘ g₁) left-inv ⟩
|
||||||
𝟙 ∘ g₁ ≡⟨ proj₂ ident ⟩
|
𝟙 ∘ g₁ ≡⟨ proj₂ ident ⟩
|
||||||
g₁ ∎
|
g₁ ∎
|
||||||
|
@ -65,7 +65,7 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} (unprovable : IsCategory (RawCat
|
||||||
|
|
||||||
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
||||||
:func→: : NaturalTransformation (prshf A) (prshf B)
|
:func→: : NaturalTransformation (prshf A) (prshf B)
|
||||||
:func→: = (λ C x → ℂ [ f ∘ x ]) , λ f₁ → funExt λ _ → ℂ.assoc
|
:func→: = (λ C x → ℂ [ f ∘ x ]) , λ f₁ → funExt λ _ → ℂ.isAssociative
|
||||||
|
|
||||||
module _ {c : Category.Object ℂ} where
|
module _ {c : Category.Object ℂ} where
|
||||||
eqTrans : (λ _ → Transformation (prshf c) (prshf c))
|
eqTrans : (λ _ → Transformation (prshf c) (prshf c))
|
||||||
|
|
Loading…
Reference in a new issue