Merge branch 'dev'
This commit is contained in:
commit
6322ef92d5
6
BACKLOG.md
Normal file
6
BACKLOG.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
Backlog
|
||||
=======
|
||||
|
||||
Prove univalence for various categories
|
||||
|
||||
Prove postulates in `Cat.Wishlist`
|
17
CHANGELOG.md
Normal file
17
CHANGELOG.md
Normal file
|
@ -0,0 +1,17 @@
|
|||
Changelog
|
||||
=========
|
||||
|
||||
Version 1.1.0
|
||||
-------------
|
||||
In this version categories have been refactored - there's now a notion of a raw
|
||||
category, and a proper category which has the data (raw category) as well as
|
||||
the laws.
|
||||
|
||||
Furthermore the type of arrows must be homotopy sets and they must satisfy univalence.
|
||||
|
||||
I've made a module `Cat.Wishlist` where I just postulate things that I hope to
|
||||
implement upstream in `cubical`.
|
||||
|
||||
I have proven that `IsCategory` is a mere proposition.
|
||||
|
||||
I've also updated the category of sets to adhere to this new definition.
|
22
README.md
22
README.md
|
@ -1,17 +1,29 @@
|
|||
Description
|
||||
===========
|
||||
This project includes code as well as my masters thesis (currently just
|
||||
consisting of the proposal for the thesis).
|
||||
This project aims to formalize some parts of category theory using cubical agda
|
||||
— an extension to agda permitting univalence. To learn more about this
|
||||
[readthedocs](https://agda.readthedocs.io/en/latest/language/cubical.html).
|
||||
|
||||
This project draws a lot of inspiration from [the
|
||||
HoTT-book](https://homotopytypetheory.org/book/).
|
||||
|
||||
Installation
|
||||
============
|
||||
You probably need a very recent version of the Agda compiler. At the time
|
||||
of writing the solution has been tested with Agda version 2.6.0-5d84754.
|
||||
|
||||
Dependencies
|
||||
------------
|
||||
To succesfully compile the following is needed:
|
||||
|
||||
* Agda version >= `707ce6042b6a3bdb26521f3fe8dfe5d8a8470a43`.
|
||||
* [Agda Standard Library](https://github.com/agda/agda-stdlib)
|
||||
* [Cubical](https://github.com/Saizan/cubical-demo/)
|
||||
|
||||
It's important to have the right version of these - but which one is the right
|
||||
is in constant flux. It's most likely the newest one.
|
||||
|
||||
I've used git submodules to manage dependencies. Unfortunately Agda does not
|
||||
allow specifying libraries to be used only as local dependencies.
|
||||
allow specifying libraries to be used only as local dependencies. So the
|
||||
submodules are mostly used for documentation.
|
||||
|
||||
You can let Agda know about these libraries by appending them to your global
|
||||
libraries file like so: (NB!: There is a good reason this is not in a
|
||||
|
|
|
@ -1 +1 @@
|
|||
Subproject commit 157497a5335ad0069c7aaffbc65932c40a28ee68
|
||||
Subproject commit 87d28d7d753f73abd20665d7bbb88f9d72ed88aa
|
|
@ -1 +1 @@
|
|||
Subproject commit 12c2c628e9e202f1698a4c32e0356d5ca8cb6151
|
||||
Subproject commit 9bfbacbb30d4673332566f6e4a58fd04e3904106
|
|
@ -8,55 +8,65 @@ open import Data.Product
|
|||
open import Cat.Category
|
||||
|
||||
open IsCategory
|
||||
open Category
|
||||
|
||||
-- data Path {ℓ : Level} {A : Set ℓ} : (a b : A) → Set ℓ where
|
||||
-- emptyPath : {a : A} → Path a a
|
||||
-- concatenate : {a b c : A} → Path a b → Path b c → Path a b
|
||||
|
||||
-- import Data.List
|
||||
-- P : (a b : Object ℂ) → Set (ℓ ⊔ ℓ')
|
||||
-- P = {!Data.List.List ?!}
|
||||
-- Generalized paths:
|
||||
data Path {ℓ ℓ' : Level} {A : Set ℓ} (R : A → A → Set ℓ') : (a b : A) → Set (ℓ ⊔ ℓ') where
|
||||
empty : {a : A} → Path R a a
|
||||
cons : {a b c : A} → R b c → Path R a b → Path R a c
|
||||
|
||||
concatenate _++_ : ∀ {ℓ ℓ'} {A : Set ℓ} {a b c : A} {R : A → A → Set ℓ'} → Path R b c → Path R a b → Path R a c
|
||||
concatenate empty p = p
|
||||
concatenate (cons x q) p = cons x (concatenate q p)
|
||||
_++_ = concatenate
|
||||
|
||||
singleton : ∀ {ℓ} {𝓤 : Set ℓ} {ℓr} {R : 𝓤 → 𝓤 → Set ℓr} {A B : 𝓤} → R A B → Path R A B
|
||||
singleton f = cons f empty
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
module ℂ = Category ℂ
|
||||
|
||||
-- import Data.List
|
||||
-- P : (a b : Object ℂ) → Set (ℓ ⊔ ℓ')
|
||||
-- P = {!Data.List.List ?!}
|
||||
-- Generalized paths:
|
||||
-- data P {ℓ : Level} {A : Set ℓ} (R : A → A → Set ℓ) : (a b : A) → Set ℓ where
|
||||
-- e : {a : A} → P R a a
|
||||
-- c : {a b c : A} → R a b → P R b c → P R a c
|
||||
|
||||
-- Path's are like lists with directions.
|
||||
-- This implementation is specialized to categories.
|
||||
data Path : (a b : Object ℂ) → Set (ℓ ⊔ ℓ') where
|
||||
empty : {A : Object ℂ} → Path A A
|
||||
cons : ∀ {A B C} → ℂ [ B , C ] → Path A B → Path A C
|
||||
|
||||
concatenate : ∀ {A B C : Object ℂ} → Path B C → Path A B → Path A C
|
||||
concatenate empty p = p
|
||||
concatenate (cons x q) p = cons x (concatenate q p)
|
||||
open Category ℂ
|
||||
|
||||
private
|
||||
module _ {A B C D : Object ℂ} where
|
||||
p-assoc : {r : Path A B} {q : Path B C} {p : Path C D} → concatenate p (concatenate q r) ≡ concatenate (concatenate p q) r
|
||||
p-assoc {r} {q} {p} = {!!}
|
||||
module _ {A B : Object ℂ} {p : Path A B} where
|
||||
-- postulate
|
||||
-- ident-r : concatenate {A} {A} {B} p (lift 𝟙) ≡ p
|
||||
-- ident-l : concatenate {A} {B} {B} (lift 𝟙) p ≡ p
|
||||
module _ {A B : Object ℂ} where
|
||||
isSet : Cubical.isSet (Path A B)
|
||||
isSet = {!!}
|
||||
p-assoc : {A B C D : Object} {r : Path Arrow A B} {q : Path Arrow B C} {p : Path Arrow C D}
|
||||
→ p ++ (q ++ r) ≡ (p ++ q) ++ r
|
||||
p-assoc {r = r} {q} {empty} = refl
|
||||
p-assoc {A} {B} {C} {D} {r = r} {q} {cons x p} = begin
|
||||
cons x p ++ (q ++ r) ≡⟨ cong (cons x) lem ⟩
|
||||
cons x ((p ++ q) ++ r) ≡⟨⟩
|
||||
(cons x p ++ q) ++ r ∎
|
||||
where
|
||||
lem : p ++ (q ++ r) ≡ ((p ++ q) ++ r)
|
||||
lem = p-assoc {r = r} {q} {p}
|
||||
|
||||
ident-r : ∀ {A} {B} {p : Path Arrow A B} → concatenate p empty ≡ p
|
||||
ident-r {p = empty} = refl
|
||||
ident-r {p = cons x p} = cong (cons x) ident-r
|
||||
|
||||
ident-l : ∀ {A} {B} {p : Path Arrow A B} → concatenate empty p ≡ p
|
||||
ident-l = refl
|
||||
|
||||
module _ {A B : Object} where
|
||||
isSet : Cubical.isSet (Path Arrow A B)
|
||||
isSet a b p q = {!!}
|
||||
|
||||
RawFree : RawCategory ℓ (ℓ ⊔ ℓ')
|
||||
RawFree = record
|
||||
{ Object = Object ℂ
|
||||
; Arrow = Path
|
||||
; 𝟙 = λ {o} → {!lift 𝟙!}
|
||||
; _∘_ = λ {a b c} → {!concatenate {a} {b} {c}!}
|
||||
{ Object = Object
|
||||
; Arrow = Path Arrow
|
||||
; 𝟙 = empty
|
||||
; _∘_ = concatenate
|
||||
}
|
||||
RawIsCategoryFree : IsCategory RawFree
|
||||
RawIsCategoryFree = record
|
||||
{ assoc = {!p-assoc!}
|
||||
; ident = {!ident-r , ident-l!}
|
||||
{ assoc = λ { {f = f} {g} {h} → p-assoc {r = f} {g} {h}}
|
||||
; ident = ident-r , ident-l
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@ import Cubical.GradLemma
|
|||
module UIP = Cubical.GradLemma
|
||||
open import Cubical.Sigma
|
||||
open import Cubical.NType
|
||||
open import Cubical.NType.Properties
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||
module Nat = Data.Nat
|
||||
|
||||
|
@ -20,7 +21,7 @@ open import Cat.Equality
|
|||
open Equality.Data.Product
|
||||
|
||||
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
||||
open Category hiding ( _∘_ ; Arrow )
|
||||
open Category using (Object ; 𝟙)
|
||||
open Functor
|
||||
|
||||
module _ (F G : Functor ℂ 𝔻) where
|
||||
|
@ -69,7 +70,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
where
|
||||
module F = Functor F
|
||||
F→ = F.func→
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
module 𝔻 = Category 𝔻
|
||||
|
||||
identityNat : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
||||
identityNat F = identityTrans F , identityNatural F
|
||||
|
@ -94,13 +95,13 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
||||
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
||||
where
|
||||
open IsCategory (isCategory 𝔻)
|
||||
open Category 𝔻
|
||||
|
||||
NatComp = _:⊕:_
|
||||
|
||||
private
|
||||
module _ {F G : Functor ℂ 𝔻} where
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
module 𝔻 = Category 𝔻
|
||||
|
||||
transformationIsSet : isSet (Transformation F G)
|
||||
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l → p l C) (λ l → q l C) i j
|
||||
|
@ -125,18 +126,37 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
θ = proj₁ θ'
|
||||
η = proj₁ η'
|
||||
ζ = proj₁ ζ'
|
||||
θNat = proj₂ θ'
|
||||
ηNat = proj₂ η'
|
||||
ζNat = proj₂ ζ'
|
||||
L : NaturalTransformation A D
|
||||
L = (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ'))
|
||||
R : NaturalTransformation A D
|
||||
R = (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
||||
_g⊕f_ = _:⊕:_ {A} {B} {C}
|
||||
_h⊕g_ = _:⊕:_ {B} {C} {D}
|
||||
:assoc: : (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ')) ≡ (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
||||
:assoc: = Σ≡ (funExt (λ _ → assoc)) {!!}
|
||||
:assoc: : L ≡ R
|
||||
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
||||
L R (funExt (λ x → assoc))
|
||||
where
|
||||
open IsCategory (isCategory 𝔻)
|
||||
open Category 𝔻
|
||||
|
||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||
private
|
||||
allNatural = naturalIsProp {F = A} {B}
|
||||
f' = proj₁ f
|
||||
module 𝔻Data = Category 𝔻
|
||||
eq-r : ∀ C → (𝔻 [ f' C ∘ identityTrans A C ]) ≡ f' C
|
||||
eq-r C = begin
|
||||
𝔻 [ f' C ∘ identityTrans A C ] ≡⟨⟩
|
||||
𝔻 [ f' C ∘ 𝔻Data.𝟙 ] ≡⟨ proj₁ (𝔻.ident {A} {B}) ⟩
|
||||
f' C ∎
|
||||
eq-l : ∀ C → (𝔻 [ identityTrans B C ∘ f' C ]) ≡ f' C
|
||||
eq-l C = proj₂ (𝔻.ident {A} {B})
|
||||
ident-r : (_:⊕:_ {A} {A} {B} f (identityNat A)) ≡ f
|
||||
ident-r = {!!}
|
||||
ident-r = lemSig allNatural _ _ (funExt eq-r)
|
||||
ident-l : (_:⊕:_ {A} {B} {B} (identityNat B) f) ≡ f
|
||||
ident-l = {!!}
|
||||
ident-l = lemSig allNatural _ _ (funExt eq-l)
|
||||
:ident:
|
||||
: (_:⊕:_ {A} {A} {B} f (identityNat A)) ≡ f
|
||||
× (_:⊕:_ {A} {B} {B} (identityNat B) f) ≡ f
|
||||
|
@ -161,7 +181,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
}
|
||||
|
||||
Fun : Category (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') (ℓc ⊔ ℓc' ⊔ ℓd')
|
||||
raw Fun = RawFun
|
||||
Category.raw Fun = RawFun
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
open import Cat.Categories.Sets
|
||||
|
|
|
@ -9,80 +9,113 @@ import Function
|
|||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
open import Cat.Category.Product
|
||||
open Category
|
||||
|
||||
module _ (ℓ : Level) where
|
||||
private
|
||||
open RawCategory
|
||||
open IsCategory
|
||||
open import Cubical.Univalence
|
||||
open import Cubical.NType.Properties
|
||||
open import Cubical.Universe
|
||||
|
||||
SetsRaw : RawCategory (lsuc ℓ) ℓ
|
||||
Object SetsRaw = Cubical.Universe.0-Set
|
||||
Arrow SetsRaw (T , _) (U , _) = T → U
|
||||
𝟙 SetsRaw = Function.id
|
||||
_∘_ SetsRaw = Function._∘′_
|
||||
|
||||
SetsIsCategory : IsCategory SetsRaw
|
||||
assoc SetsIsCategory = refl
|
||||
proj₁ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
proj₂ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
arrowIsSet SetsIsCategory {B = (_ , s)} = setPi λ _ → s
|
||||
univalent SetsIsCategory = {!!}
|
||||
|
||||
𝓢𝓮𝓽 Sets : Category (lsuc ℓ) ℓ
|
||||
Category.raw 𝓢𝓮𝓽 = SetsRaw
|
||||
Category.isCategory 𝓢𝓮𝓽 = SetsIsCategory
|
||||
Sets = 𝓢𝓮𝓽
|
||||
|
||||
module _ {ℓ : Level} where
|
||||
SetsRaw : RawCategory (lsuc ℓ) ℓ
|
||||
RawCategory.Object SetsRaw = Set ℓ
|
||||
RawCategory.Arrow SetsRaw = λ T U → T → U
|
||||
RawCategory.𝟙 SetsRaw = Function.id
|
||||
RawCategory._∘_ SetsRaw = Function._∘′_
|
||||
|
||||
open IsCategory
|
||||
SetsIsCategory : IsCategory SetsRaw
|
||||
assoc SetsIsCategory = refl
|
||||
proj₁ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
proj₂ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
arrowIsSet SetsIsCategory = {!!}
|
||||
univalent SetsIsCategory = {!!}
|
||||
|
||||
Sets : Category (lsuc ℓ) ℓ
|
||||
raw Sets = SetsRaw
|
||||
isCategory Sets = SetsIsCategory
|
||||
|
||||
private
|
||||
module _ {X A B : Set ℓ} (f : X → A) (g : X → B) where
|
||||
_&&&_ : (X → A × B)
|
||||
_&&&_ x = f x , g x
|
||||
module _ {X A B : Set ℓ} (f : X → A) (g : X → B) where
|
||||
lem : Sets [ proj₁ ∘ (f &&& g)] ≡ f × Sets [ proj₂ ∘ (f &&& g)] ≡ g
|
||||
proj₁ lem = refl
|
||||
proj₂ lem = refl
|
||||
instance
|
||||
isProduct : {A B : Object Sets} → IsProduct Sets {A} {B} proj₁ proj₂
|
||||
isProduct f g = f &&& g , lem f g
|
||||
𝓢 = 𝓢𝓮𝓽 ℓ
|
||||
open Category 𝓢
|
||||
open import Cubical.Sigma
|
||||
|
||||
product : (A B : Object Sets) → Product {ℂ = Sets} A B
|
||||
product A B = record { obj = A × B ; proj₁ = proj₁ ; proj₂ = proj₂ ; isProduct = isProduct }
|
||||
module _ (0A 0B : Object) where
|
||||
private
|
||||
A : Set ℓ
|
||||
A = proj₁ 0A
|
||||
sA : isSet A
|
||||
sA = proj₂ 0A
|
||||
B : Set ℓ
|
||||
B = proj₁ 0B
|
||||
sB : isSet B
|
||||
sB = proj₂ 0B
|
||||
0A×0B : Object
|
||||
0A×0B = (A × B) , sigPresSet sA λ _ → sB
|
||||
|
||||
module _ {X A B : Set ℓ} (f : X → A) (g : X → B) where
|
||||
_&&&_ : (X → A × B)
|
||||
_&&&_ x = f x , g x
|
||||
module _ {0X : Object} where
|
||||
X = proj₁ 0X
|
||||
module _ (f : X → A ) (g : X → B) where
|
||||
lem : proj₁ Function.∘′ (f &&& g) ≡ f × proj₂ Function.∘′ (f &&& g) ≡ g
|
||||
proj₁ lem = refl
|
||||
proj₂ lem = refl
|
||||
instance
|
||||
isProduct : IsProduct 𝓢 {0A} {0B} {0A×0B} proj₁ proj₂
|
||||
isProduct {X = X} f g = (f &&& g) , lem {0X = X} f g
|
||||
|
||||
product : Product {ℂ = 𝓢} 0A 0B
|
||||
product = record
|
||||
{ obj = 0A×0B
|
||||
; proj₁ = Data.Product.proj₁
|
||||
; proj₂ = Data.Product.proj₂
|
||||
; isProduct = λ { {X} → isProduct {X = X}}
|
||||
}
|
||||
|
||||
instance
|
||||
SetsHasProducts : HasProducts Sets
|
||||
SetsHasProducts : HasProducts 𝓢
|
||||
SetsHasProducts = record { product = product }
|
||||
|
||||
-- Covariant Presheaf
|
||||
Representable : {ℓ ℓ' : Level} → (ℂ : Category ℓ ℓ') → Set (ℓ ⊔ lsuc ℓ')
|
||||
Representable {ℓ' = ℓ'} ℂ = Functor ℂ (Sets {ℓ'})
|
||||
module _ {ℓa ℓb : Level} where
|
||||
module _ (ℂ : Category ℓa ℓb) where
|
||||
-- Covariant Presheaf
|
||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||
|
||||
-- The "co-yoneda" embedding.
|
||||
representable : ∀ {ℓ ℓ'} {ℂ : Category ℓ ℓ'} → Category.Object ℂ → Representable ℂ
|
||||
representable {ℂ = ℂ} A = record
|
||||
{ raw = record
|
||||
{ func* = λ B → ℂ [ A , B ]
|
||||
; func→ = ℂ [_∘_]
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ _ → proj₂ ident
|
||||
; distrib = funExt λ x → sym assoc
|
||||
}
|
||||
}
|
||||
where
|
||||
open IsCategory (isCategory ℂ)
|
||||
-- Contravariant Presheaf
|
||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||
Presheaf = Functor (Opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||
|
||||
-- Contravariant Presheaf
|
||||
Presheaf : ∀ {ℓ ℓ'} (ℂ : Category ℓ ℓ') → Set (ℓ ⊔ lsuc ℓ')
|
||||
Presheaf {ℓ' = ℓ'} ℂ = Functor (Opposite ℂ) (Sets {ℓ'})
|
||||
|
||||
-- Alternate name: `yoneda`
|
||||
presheaf : {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} → Category.Object (Opposite ℂ) → Presheaf ℂ
|
||||
presheaf {ℂ = ℂ} B = record
|
||||
{ raw = record
|
||||
{ func* = λ A → ℂ [ A , B ]
|
||||
; func→ = λ f g → ℂ [ g ∘ f ]
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ x → proj₁ ident
|
||||
; distrib = funExt λ x → assoc
|
||||
-- The "co-yoneda" embedding.
|
||||
representable : {ℂ : Category ℓa ℓb} → Category.Object ℂ → Representable ℂ
|
||||
representable {ℂ = ℂ} A = record
|
||||
{ raw = record
|
||||
{ func* = λ B → ℂ [ A , B ] , arrowIsSet
|
||||
; func→ = ℂ [_∘_]
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ _ → proj₂ ident
|
||||
; distrib = funExt λ x → sym assoc
|
||||
}
|
||||
}
|
||||
}
|
||||
where
|
||||
open IsCategory (isCategory ℂ)
|
||||
where
|
||||
open Category ℂ
|
||||
|
||||
-- Alternate name: `yoneda`
|
||||
presheaf : {ℂ : Category ℓa ℓb} → Category.Object (Opposite ℂ) → Presheaf ℂ
|
||||
presheaf {ℂ = ℂ} B = record
|
||||
{ raw = record
|
||||
{ func* = λ A → ℂ [ A , B ] , arrowIsSet
|
||||
; func→ = λ f g → ℂ [ g ∘ f ]
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ x → proj₁ ident
|
||||
; distrib = funExt λ x → assoc
|
||||
}
|
||||
}
|
||||
where
|
||||
open Category ℂ
|
||||
|
|
|
@ -14,6 +14,8 @@ import Function
|
|||
open import Cubical
|
||||
open import Cubical.NType.Properties using ( propIsEquiv )
|
||||
|
||||
open import Cat.Wishlist
|
||||
|
||||
∃! : ∀ {a b} {A : Set a}
|
||||
→ (A → Set b) → Set (a ⊔ b)
|
||||
∃! = ∃!≈ _≡_
|
||||
|
@ -23,64 +25,39 @@ open import Cubical.NType.Properties using ( propIsEquiv )
|
|||
|
||||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||||
|
||||
-- This follows from [HoTT-book: §7.1.10]
|
||||
-- Andrea says the proof is in `cubical` but I can't find it.
|
||||
postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A)
|
||||
|
||||
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||||
-- adding no-eta-equality can speed up type-checking.
|
||||
-- ONLY IF you define your categories with copatterns though.
|
||||
record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
no-eta-equality
|
||||
field
|
||||
-- Need something like:
|
||||
-- Object : Σ (Set ℓ) isGroupoid
|
||||
Object : Set ℓ
|
||||
-- And:
|
||||
-- Arrow : Object → Object → Σ (Set ℓ') isSet
|
||||
Arrow : Object → Object → Set ℓ'
|
||||
𝟙 : {o : Object} → Arrow o o
|
||||
Object : Set ℓa
|
||||
Arrow : Object → Object → Set ℓb
|
||||
𝟙 : {A : Object} → Arrow A A
|
||||
_∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C
|
||||
|
||||
infixl 10 _∘_
|
||||
|
||||
domain : { a b : Object } → Arrow a b → Object
|
||||
domain {a = a} _ = a
|
||||
|
||||
codomain : { a b : Object } → Arrow a b → Object
|
||||
codomain {b = b} _ = b
|
||||
|
||||
-- Thierry: All projections must be `isProp`'s
|
||||
IsAssociative : Set (ℓa ⊔ ℓb)
|
||||
IsAssociative = ∀ {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
|
||||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
|
||||
-- According to definitions 9.1.1 and 9.1.6 in the HoTT book the
|
||||
-- arrows of a category form a set (arrow-is-set), and there is an
|
||||
-- equivalence between the equality of objects and isomorphisms
|
||||
-- (univalent).
|
||||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
open RawCategory ℂ
|
||||
module Raw = RawCategory ℂ
|
||||
field
|
||||
assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
|
||||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
ident : {A B : Object} {f : Arrow A B}
|
||||
→ f ∘ 𝟙 ≡ f × 𝟙 ∘ f ≡ f
|
||||
arrowIsSet : ∀ {A B : Object} → isSet (Arrow A B)
|
||||
IsIdentity : ({A : Object} → Arrow A A) → Set (ℓa ⊔ ℓb)
|
||||
IsIdentity id = {A B : Object} {f : Arrow A B}
|
||||
→ f ∘ id ≡ f × id ∘ f ≡ f
|
||||
|
||||
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
||||
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||||
|
||||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] IsInverseOf f g
|
||||
|
||||
_≅_ : (A B : Object) → Set ℓb
|
||||
_≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
||||
|
||||
idIso : (A : Object) → A ≅ A
|
||||
idIso A = 𝟙 , (𝟙 , ident)
|
||||
|
||||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||||
|
||||
-- TODO: might want to implement isEquiv differently, there are 3
|
||||
-- equivalent formulations in the book.
|
||||
Univalent : Set (ℓa ⊔ ℓb)
|
||||
Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B)
|
||||
field
|
||||
univalent : Univalent
|
||||
|
||||
module _ {A B : Object} where
|
||||
Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb
|
||||
Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁
|
||||
|
@ -88,69 +65,137 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||||
|
||||
module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
||||
-- TODO, provable by using arrow-is-set and that isProp (isEquiv _ _ _)
|
||||
-- This lemma will be useful to prove the equality of two categories.
|
||||
IsCategory-is-prop : isProp (IsCategory ℂ)
|
||||
IsCategory-is-prop x y i = record
|
||||
-- Why choose `x`'s `arrowIsSet`?
|
||||
{ assoc = x.arrowIsSet _ _ x.assoc y.assoc i
|
||||
; ident =
|
||||
( x.arrowIsSet _ _ (fst x.ident) (fst y.ident) i
|
||||
, x.arrowIsSet _ _ (snd x.ident) (snd y.ident) i
|
||||
)
|
||||
; arrowIsSet = isSetIsProp x.arrowIsSet y.arrowIsSet i
|
||||
; univalent = {!!}
|
||||
}
|
||||
where
|
||||
module x = IsCategory x
|
||||
module y = IsCategory y
|
||||
xuni : x.Univalent
|
||||
xuni = x.univalent
|
||||
yuni : y.Univalent
|
||||
yuni = y.univalent
|
||||
open RawCategory ℂ
|
||||
T : I → Set (ℓa ⊔ ℓb)
|
||||
T i = {A B : Object} →
|
||||
isEquiv (A ≡ B) (A x.≅ B)
|
||||
(λ A≡B →
|
||||
transp
|
||||
(λ j →
|
||||
Σ-syntax (Arrow A (A≡B j))
|
||||
(λ f → Σ-syntax (Arrow (A≡B j) A) (λ g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙)))
|
||||
( 𝟙
|
||||
, 𝟙
|
||||
, x.arrowIsSet _ _ (fst x.ident) (fst y.ident) i
|
||||
, x.arrowIsSet _ _ (snd x.ident) (snd y.ident) i
|
||||
)
|
||||
)
|
||||
eqUni : T [ xuni ≡ yuni ]
|
||||
eqUni = {!!}
|
||||
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||||
IsInitial I = {X : Object} → isContr (Arrow I X)
|
||||
|
||||
IsTerminal : Object → Set (ℓa ⊔ ℓb)
|
||||
IsTerminal T = {X : Object} → isContr (Arrow X T)
|
||||
|
||||
Initial : Set (ℓa ⊔ ℓb)
|
||||
Initial = Σ Object IsInitial
|
||||
|
||||
Terminal : Set (ℓa ⊔ ℓb)
|
||||
Terminal = Σ Object IsTerminal
|
||||
|
||||
-- Univalence is indexed by a raw category as well as an identity proof.
|
||||
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||
open RawCategory ℂ
|
||||
module _ (ident : IsIdentity 𝟙) where
|
||||
idIso : (A : Object) → A ≅ A
|
||||
idIso A = 𝟙 , (𝟙 , ident)
|
||||
|
||||
-- Lemma 9.1.4 in [HoTT]
|
||||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||||
|
||||
-- TODO: might want to implement isEquiv
|
||||
-- differently, there are 3
|
||||
-- equivalent formulations in the book.
|
||||
Univalent : Set (ℓa ⊔ ℓb)
|
||||
Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B)
|
||||
|
||||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
open RawCategory ℂ
|
||||
open Univalence ℂ public
|
||||
field
|
||||
assoc : IsAssociative
|
||||
ident : IsIdentity 𝟙
|
||||
arrowIsSet : ∀ {A B : Object} → isSet (Arrow A B)
|
||||
univalent : Univalent ident
|
||||
|
||||
-- `IsCategory` is a mere proposition.
|
||||
module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||
open RawCategory C
|
||||
module _ (ℂ : IsCategory C) where
|
||||
open IsCategory ℂ
|
||||
open import Cubical.NType
|
||||
open import Cubical.NType.Properties
|
||||
|
||||
propIsAssociative : isProp IsAssociative
|
||||
propIsAssociative x y i = arrowIsSet _ _ x y i
|
||||
|
||||
propIsIdentity : ∀ {f : ∀ {A} → Arrow A A} → isProp (IsIdentity f)
|
||||
propIsIdentity a b i
|
||||
= arrowIsSet _ _ (fst a) (fst b) i
|
||||
, arrowIsSet _ _ (snd a) (snd b) i
|
||||
|
||||
propArrowIsSet : isProp (∀ {A B} → isSet (Arrow A B))
|
||||
propArrowIsSet a b i = isSetIsProp a b i
|
||||
|
||||
propIsInverseOf : ∀ {A B f g} → isProp (IsInverseOf {A} {B} f g)
|
||||
propIsInverseOf x y = λ i →
|
||||
let
|
||||
h : fst x ≡ fst y
|
||||
h = arrowIsSet _ _ (fst x) (fst y)
|
||||
hh : snd x ≡ snd y
|
||||
hh = arrowIsSet _ _ (snd x) (snd y)
|
||||
in h i , hh i
|
||||
|
||||
module _ {A B : Object} {f : Arrow A B} where
|
||||
isoIsProp : isProp (Isomorphism f)
|
||||
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
|
||||
lemSig (λ g → propIsInverseOf) a a' geq
|
||||
where
|
||||
open Cubical.NType.Properties
|
||||
geq : g ≡ g'
|
||||
geq = begin
|
||||
g ≡⟨ sym (fst ident) ⟩
|
||||
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||||
g ∘ (f ∘ g') ≡⟨ assoc ⟩
|
||||
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
||||
𝟙 ∘ g' ≡⟨ snd ident ⟩
|
||||
g' ∎
|
||||
|
||||
propUnivalent : isProp (Univalent ident)
|
||||
propUnivalent a b i = propPi (λ iso → propHasLevel ⟨-2⟩) a b i
|
||||
|
||||
private
|
||||
module _ (x y : IsCategory C) where
|
||||
module IC = IsCategory
|
||||
module X = IsCategory x
|
||||
module Y = IsCategory y
|
||||
open Univalence C
|
||||
-- In a few places I use the result of propositionality of the various
|
||||
-- projections of `IsCategory` - I've arbitrarily chosed to use this
|
||||
-- result from `x : IsCategory C`. I don't know which (if any) possibly
|
||||
-- adverse effects this may have.
|
||||
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
||||
ident = propIsIdentity x X.ident Y.ident
|
||||
done : x ≡ y
|
||||
U : ∀ {a : IsIdentity 𝟙} → (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ] → (b : Univalent a) → Set _
|
||||
U eqwal bbb = (λ i → Univalent (eqwal i)) [ X.univalent ≡ bbb ]
|
||||
P : (y : IsIdentity 𝟙)
|
||||
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ y ] → Set _
|
||||
P y eq = ∀ (b' : Univalent y) → U eq b'
|
||||
helper : ∀ (b' : Univalent X.ident)
|
||||
→ (λ _ → Univalent X.ident) [ X.univalent ≡ b' ]
|
||||
helper univ = propUnivalent x X.univalent univ
|
||||
foo = pathJ P helper Y.ident ident
|
||||
eqUni : U ident Y.univalent
|
||||
eqUni = foo Y.univalent
|
||||
IC.assoc (done i) = propIsAssociative x X.assoc Y.assoc i
|
||||
IC.ident (done i) = ident i
|
||||
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
|
||||
IC.univalent (done i) = eqUni i
|
||||
|
||||
propIsCategory : isProp (IsCategory C)
|
||||
propIsCategory = done
|
||||
|
||||
record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
field
|
||||
raw : RawCategory ℓa ℓb
|
||||
{{isCategory}} : IsCategory raw
|
||||
|
||||
private
|
||||
module ℂ = RawCategory raw
|
||||
|
||||
Object : Set ℓa
|
||||
Object = ℂ.Object
|
||||
|
||||
Arrow = ℂ.Arrow
|
||||
|
||||
𝟙 = ℂ.𝟙
|
||||
|
||||
_∘_ = ℂ._∘_
|
||||
open RawCategory raw public
|
||||
open IsCategory isCategory public
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
open Category ℂ
|
||||
_[_,_] : (A : Object) → (B : Object) → Set ℓb
|
||||
_[_,_] = ℂ.Arrow
|
||||
|
||||
_[_∘_] : {A B C : Object} → (g : ℂ.Arrow B C) → (f : ℂ.Arrow A B) → ℂ.Arrow A C
|
||||
_[_∘_] = ℂ._∘_
|
||||
_[_,_] = Arrow
|
||||
|
||||
_[_∘_] : {A B C : Object} → (g : Arrow B C) → (f : Arrow A B) → Arrow A C
|
||||
_[_∘_] = _∘_
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
private
|
||||
|
@ -162,8 +207,6 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
RawCategory.𝟙 OpRaw = 𝟙
|
||||
RawCategory._∘_ OpRaw = Function.flip _∘_
|
||||
|
||||
open IsCategory isCategory
|
||||
|
||||
OpIsCategory : IsCategory OpRaw
|
||||
IsCategory.assoc OpIsCategory = sym assoc
|
||||
IsCategory.ident OpIsCategory = swap ident
|
||||
|
@ -199,20 +242,3 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||||
raw (Opposite-is-involution i) = rawOp i
|
||||
isCategory (Opposite-is-involution i) = rawIsCat i
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
open Category
|
||||
unique = isContr
|
||||
|
||||
IsInitial : Object ℂ → Set (ℓa ⊔ ℓb)
|
||||
IsInitial I = {X : Object ℂ} → unique (ℂ [ I , X ])
|
||||
|
||||
IsTerminal : Object ℂ → Set (ℓa ⊔ ℓb)
|
||||
-- ∃![ ? ] ?
|
||||
IsTerminal T = {X : Object ℂ} → unique (ℂ [ X , T ])
|
||||
|
||||
Initial : Set (ℓa ⊔ ℓb)
|
||||
Initial = Σ (Object ℂ) IsInitial
|
||||
|
||||
Terminal : Set (ℓa ⊔ ℓb)
|
||||
Terminal = Σ (Object ℂ) IsTerminal
|
||||
|
|
|
@ -47,7 +47,6 @@ module _ {ℓc ℓc' ℓd ℓd'}
|
|||
open IsFunctor
|
||||
open Functor
|
||||
|
||||
-- TODO: Is `IsFunctor` a proposition?
|
||||
module _
|
||||
{ℓa ℓb : Level}
|
||||
{ℂ 𝔻 : Category ℓa ℓb}
|
||||
|
@ -56,11 +55,8 @@ module _
|
|||
private
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
|
||||
-- isProp : Set ℓ
|
||||
-- isProp = (x y : A) → x ≡ y
|
||||
|
||||
IsFunctorIsProp : isProp (IsFunctor _ _ F)
|
||||
IsFunctorIsProp isF0 isF1 i = record
|
||||
propIsFunctor : isProp (IsFunctor _ _ F)
|
||||
propIsFunctor isF0 isF1 i = record
|
||||
{ ident = 𝔻.arrowIsSet _ _ isF0.ident isF1.ident i
|
||||
; distrib = 𝔻.arrowIsSet _ _ isF0.distrib isF1.distrib i
|
||||
}
|
||||
|
@ -81,7 +77,7 @@ module _
|
|||
|
||||
IsFunctorIsProp' : IsProp' λ i → IsFunctor _ _ (F i)
|
||||
IsFunctorIsProp' isF0 isF1 = lemPropF {B = IsFunctor ℂ 𝔻}
|
||||
(\ F → IsFunctorIsProp {F = F}) (\ i → F i)
|
||||
(\ F → propIsFunctor {F = F}) (\ i → F i)
|
||||
where
|
||||
open import Cubical.NType.Properties using (lemPropF)
|
||||
|
||||
|
|
|
@ -14,7 +14,6 @@ open Equality.Data.Product
|
|||
|
||||
module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object ℂ } {X : Category.Object ℂ} (f : Category.Arrow ℂ A B) where
|
||||
open Category ℂ
|
||||
open IsCategory (isCategory)
|
||||
|
||||
iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
||||
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||
|
|
|
@ -1,6 +1,15 @@
|
|||
module Cat.Wishlist where
|
||||
|
||||
open import Level
|
||||
open import Cubical.NType
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||
|
||||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||
|
||||
module _ {ℓ : Level} {A : Set ℓ} where
|
||||
-- This is §7.1.10 in [HoTT]. Andrea says the proof is in `cubical` but I
|
||||
-- can't find it.
|
||||
postulate propHasLevel : ∀ n → isProp (HasLevel n A)
|
||||
|
||||
isSetIsProp : isProp (isSet A)
|
||||
isSetIsProp = propHasLevel (S (S ⟨-2⟩))
|
||||
|
|
Loading…
Reference in a new issue