Cosmetics
This commit is contained in:
parent
e8b29e1f7f
commit
64a0292755
|
@ -21,6 +21,7 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
open NaturalTransformation ℂ ℂ
|
open NaturalTransformation ℂ ℂ
|
||||||
record RawMonad : Set ℓ where
|
record RawMonad : Set ℓ where
|
||||||
field
|
field
|
||||||
|
-- TODO rename fields here
|
||||||
-- R ~ m
|
-- R ~ m
|
||||||
R : EndoFunctor ℂ
|
R : EndoFunctor ℂ
|
||||||
-- η ~ pure
|
-- η ~ pure
|
||||||
|
@ -316,8 +317,9 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
Kraw.bind forthRaw = bind
|
Kraw.bind forthRaw = bind
|
||||||
|
|
||||||
module _ {raw : M.RawMonad} (m : M.IsMonad raw) where
|
module _ {raw : M.RawMonad} (m : M.IsMonad raw) where
|
||||||
module MI = M.IsMonad m
|
private
|
||||||
module KI = K.IsMonad
|
module MI = M.IsMonad m
|
||||||
|
module KI = K.IsMonad
|
||||||
forthIsMonad : K.IsMonad (forthRaw raw)
|
forthIsMonad : K.IsMonad (forthRaw raw)
|
||||||
KI.isIdentity forthIsMonad = proj₂ MI.isInverse
|
KI.isIdentity forthIsMonad = proj₂ MI.isInverse
|
||||||
KI.isNatural forthIsMonad = MI.isNatural
|
KI.isNatural forthIsMonad = MI.isNatural
|
||||||
|
@ -328,10 +330,7 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m)
|
Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m)
|
||||||
|
|
||||||
module _ (m : K.Monad) where
|
module _ (m : K.Monad) where
|
||||||
private
|
open K.Monad m
|
||||||
module ℂ = Category ℂ
|
|
||||||
open K.Monad m
|
|
||||||
open NaturalTransformation ℂ ℂ
|
|
||||||
|
|
||||||
module MR = M.RawMonad
|
module MR = M.RawMonad
|
||||||
backRaw : M.RawMonad
|
backRaw : M.RawMonad
|
||||||
|
@ -339,13 +338,11 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
MR.ηNatTrans backRaw = ηNatTrans
|
MR.ηNatTrans backRaw = ηNatTrans
|
||||||
MR.μNatTrans backRaw = μNatTrans
|
MR.μNatTrans backRaw = μNatTrans
|
||||||
|
|
||||||
module _ (m : K.Monad) where
|
module MI = M.IsMonad
|
||||||
open K.Monad m
|
-- also prove these in K.Monad!
|
||||||
open M.RawMonad (backRaw m)
|
backIsMonad : M.IsMonad backRaw
|
||||||
module Mis = M.IsMonad
|
MI.isAssociative backIsMonad = {!isAssociative!}
|
||||||
|
MI.isInverse backIsMonad = {!!}
|
||||||
backIsMonad : M.IsMonad (backRaw m)
|
|
||||||
backIsMonad = {!!}
|
|
||||||
|
|
||||||
back : K.Monad → M.Monad
|
back : K.Monad → M.Monad
|
||||||
Monoidal.Monad.raw (back m) = backRaw m
|
Monoidal.Monad.raw (back m) = backRaw m
|
||||||
|
|
Loading…
Reference in a new issue