generalized lem3 and made progress for Sets univalence
This commit is contained in:
parent
807a0f3dcd
commit
66ab7138a6
|
@ -138,14 +138,10 @@ module _ (ℓ : Level) where
|
||||||
iso : (p ≡ q) Eqv.≅ (proj₁ p ≡ proj₁ q)
|
iso : (p ≡ q) Eqv.≅ (proj₁ p ≡ proj₁ q)
|
||||||
iso = f , g , inv
|
iso = f , g , inv
|
||||||
|
|
||||||
lem3 : {Q : A → Set ℓb}
|
lem3 : ∀ {ℓc} {Q : A → Set (ℓc ⊔ ℓb)}
|
||||||
→ ((a : A) → P a ≃ Q a) → Σ A P ≃ Σ A Q
|
→ ((a : A) → P a ≃ Q a) → Σ A P ≃ Σ A Q
|
||||||
lem3 {Q} eA = res
|
lem3 {Q = Q} eA = res
|
||||||
where
|
where
|
||||||
P→Q : ∀ {a} → P a ≡ Q a
|
|
||||||
P→Q = ua (eA _)
|
|
||||||
Q→P : ∀ {a} → Q a ≡ P a
|
|
||||||
Q→P = sym P→Q
|
|
||||||
f : Σ A P → Σ A Q
|
f : Σ A P → Σ A Q
|
||||||
f (a , pA) = a , _≃_.eqv (eA a) pA
|
f (a , pA) = a , _≃_.eqv (eA a) pA
|
||||||
g : Σ A Q → Σ A P
|
g : Σ A Q → Σ A P
|
||||||
|
@ -226,7 +222,7 @@ module _ (ℓ : Level) where
|
||||||
|
|
||||||
-- lem3 and the equivalence from lem4
|
-- lem3 and the equivalence from lem4
|
||||||
step0 : Σ (A → B) isIso ≃ Σ (A → B) (isEquiv A B)
|
step0 : Σ (A → B) isIso ≃ Σ (A → B) (isEquiv A B)
|
||||||
step0 = lem3 (λ f → sym≃ (lem4 sA sB f))
|
step0 = lem3 {ℓc = lzero} (λ f → sym≃ (lem4 sA sB f))
|
||||||
-- univalence
|
-- univalence
|
||||||
step1 : Σ (A → B) (isEquiv A B) ≃ (A ≡ B)
|
step1 : Σ (A → B) (isEquiv A B) ≃ (A ≡ B)
|
||||||
step1 = hh ⊙ h
|
step1 = hh ⊙ h
|
||||||
|
@ -297,8 +293,11 @@ module _ (ℓ : Level) where
|
||||||
--
|
--
|
||||||
-- is contractible, which implies univalence.
|
-- is contractible, which implies univalence.
|
||||||
|
|
||||||
|
eq1 : ∀ hA → (Σ[ hB ∈ Object ] hA ≅ hB) ≡ (Σ[ hB ∈ Object ] hA ≡ hB)
|
||||||
|
eq1 hA = (ua (lem3 (\ hB → sym≃ thr)))
|
||||||
|
|
||||||
univalent[Contr] : ∀ hA → isContr (Σ[ hB ∈ Object ] hA ≅ hB)
|
univalent[Contr] : ∀ hA → isContr (Σ[ hB ∈ Object ] hA ≅ hB)
|
||||||
univalent[Contr] hA = {!!} , {!!}
|
univalent[Contr] hA = subst {P = isContr} (sym (eq1 hA)) {!!}
|
||||||
|
|
||||||
univalent : Univalent
|
univalent : Univalent
|
||||||
univalent = from[Contr] univalent[Contr]
|
univalent = from[Contr] univalent[Contr]
|
||||||
|
|
Loading…
Reference in a new issue