From 6a3e7390d7a4ff26bb856d67a8167b7d9e17f649 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Frederik=20Hangh=C3=B8j=20Iversen?= Date: Tue, 8 May 2018 02:01:17 +0200 Subject: [PATCH] Do not use colon directly for typing judgments --- doc/cubical.tex | 4 ++-- doc/implementation.tex | 2 +- doc/introduction.tex | 10 +++++----- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/doc/cubical.tex b/doc/cubical.tex index 96a67ef..d25054d 100644 --- a/doc/cubical.tex +++ b/doc/cubical.tex @@ -47,7 +47,7 @@ heterogeneous paths respectively. In Cubical Agda judgmental equality is encapsulated with the type: % $$ -\Path \tp (P : I → \MCU) → P\ 0 → P\ 1 → \MCU +\Path \tp (P \tp I → \MCU) → P\ 0 → P\ 1 → \MCU $$ % $I$ is a special data-type (\TODO{that also has special computational properties @@ -244,7 +244,7 @@ $\lemPropF$ can be used to boil this complexity down to showing that the dependent parts of the type are mere propositions. For instance, saw we have a type: % $$ -T \defeq \sum_{a : A} P\ a +T \defeq \sum_{a \tp A} P\ a $$ % For some proposition $P \tp A \to \MCU$. If we want to prove $t_0 \equiv t_1$ diff --git a/doc/implementation.tex b/doc/implementation.tex index a5ae42b..c5f01f7 100644 --- a/doc/implementation.tex +++ b/doc/implementation.tex @@ -85,7 +85,7 @@ Moreover, due to substitution for paths we can construct an isomorphism from \emph{any} path: % \begin{equation} -\var{idToIso} : A ≡ B → A ≊ B +\var{idToIso} \tp A ≡ B → A ≊ B \end{equation} % The univalence criterion for categories states that this map must be an diff --git a/doc/introduction.tex b/doc/introduction.tex index 231097c..a8c19b5 100644 --- a/doc/introduction.tex +++ b/doc/introduction.tex @@ -21,10 +21,10 @@ Consider the functions: \begin{multicols}{2} \noindent \begin{equation*} - f \defeq (n : \bN) \mapsto (0 + n : \bN) + f \defeq (n \tp \bN) \mapsto (0 + n \tp \bN) \end{equation*} \begin{equation*} - g \defeq (n : \bN) \mapsto (n + 0 : \bN) + g \defeq (n \tp \bN) \mapsto (n + 0 \tp \bN) \end{equation*} \end{multicols} % @@ -35,7 +35,7 @@ which is: % \newcommand{\suc}[1]{\mathit{suc}\ #1} \begin{align*} - + & : \bN \to \bN \to \bN \\ + + & \tp \bN \to \bN \to \bN \\ n + 0 & \defeq n \\ n + (\suc{m}) & \defeq \suc{(n + m)} \end{align*} @@ -154,7 +154,7 @@ still have univalence and functional extensionality. One option is to postulate these as axioms. This approach, however, has other shortcomings, e.g.; you lose \nomen{canonicity} (\TODO{Pageno!} \cite{huber-2016}). Canonicity means that any well-typed term evaluates to a \emph{canonical} form. For example for a closed -term $e : \bN$ it will be the case that $e$ reduces to $n$ applications of +term $e \tp \bN$ it will be the case that $e$ reduces to $n$ applications of $\mathit{suc}$ to $0$ for some $n$; $e = \mathit{suc}^n\ 0$. Without canonicity terms in the language can get ``stuck'' -- meaning that they do not reduce to a canonical form. @@ -195,7 +195,7 @@ Name & Agda & Notation \\ \nomen{Type} & \texttt{Set} & $\Type$ \\ \nomen{Set} & \texttt{Σ Set IsSet} & $\Set$ \\ Function, morphism, map & \texttt{A → B} & $A → B$ \\ -Dependent- ditto & \texttt{(a : A) → B} & $∏_{a \tp A} B$ \\ +Dependent- ditto & \texttt{(a \tp A) → B} & $∏_{a \tp A} B$ \\ \nomen{Arrow} & \texttt{Arrow A B} & $\Arrow\ A\ B$ \\ \nomen{Object} & \texttt{C.Object} & $̱ℂ.Object$ \\ Definition & \texttt{=} & $̱\defeq$ \\