Move the category of families
This commit is contained in:
parent
9a27c6af5a
commit
6bb8ba3927
48
src/Cat/Categories/Fam.agda
Normal file
48
src/Cat/Categories/Fam.agda
Normal file
|
@ -0,0 +1,48 @@
|
|||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
module Cat.Categories.Fam where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Data.Product
|
||||
open import Cubical
|
||||
import Function
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Equality
|
||||
|
||||
open Equality.Data.Product
|
||||
|
||||
module _ {ℓa ℓb : Level} where
|
||||
private
|
||||
Obj = Σ[ A ∈ Set ℓa ] (A → Set ℓb)
|
||||
Arr : Obj → Obj → Set (ℓa ⊔ ℓb)
|
||||
Arr (A , B) (A' , B') = Σ[ f ∈ (A → A') ] ({x : A} → B x → B' (f x))
|
||||
one : {o : Obj} → Arr o o
|
||||
proj₁ one = λ x → x
|
||||
proj₂ one = λ b → b
|
||||
_∘_ : {a b c : Obj} → Arr b c → Arr a b → Arr a c
|
||||
(g , g') ∘ (f , f') = g Function.∘ f , g' Function.∘ f'
|
||||
_⟨_∘_⟩ : {a b : Obj} → (c : Obj) → Arr b c → Arr a b → Arr a c
|
||||
c ⟨ g ∘ f ⟩ = _∘_ {c = c} g f
|
||||
|
||||
module _ {A B C D : Obj} {f : Arr A B} {g : Arr B C} {h : Arr C D} where
|
||||
assoc : (D ⟨ h ∘ C ⟨ g ∘ f ⟩ ⟩) ≡ D ⟨ D ⟨ h ∘ g ⟩ ∘ f ⟩
|
||||
assoc = Σ≡ refl refl
|
||||
|
||||
module _ {A B : Obj} {f : Arr A B} where
|
||||
ident : B ⟨ f ∘ one ⟩ ≡ f × B ⟨ one {B} ∘ f ⟩ ≡ f
|
||||
ident = (Σ≡ refl refl) , Σ≡ refl refl
|
||||
|
||||
instance
|
||||
isCategory : IsCategory Obj Arr one (λ {a b c} → _∘_ {a} {b} {c})
|
||||
isCategory = record
|
||||
{ assoc = λ {A} {B} {C} {D} {f} {g} {h} → assoc {D = D} {f} {g} {h}
|
||||
; ident = λ {A} {B} {f} → ident {A} {B} {f = f}
|
||||
}
|
||||
|
||||
Fam : Category (lsuc (ℓa ⊔ ℓb)) (ℓa ⊔ ℓb)
|
||||
Fam = record
|
||||
{ Object = Obj
|
||||
; Arrow = Arr
|
||||
; 𝟙 = one
|
||||
; _∘_ = λ {a b c} → _∘_ {a} {b} {c}
|
||||
}
|
|
@ -8,54 +8,22 @@ open import Data.Sum
|
|||
open import Data.Unit
|
||||
open import Data.Empty
|
||||
open import Data.Product
|
||||
open import Function
|
||||
open import Cubical
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Functor
|
||||
open import Cat.Categories.Fam
|
||||
|
||||
-- See chapter 1 for a discussion on how presheaf categories are CwF's.
|
||||
|
||||
-- See section 6.8 in Huber's thesis for details on how to implement the
|
||||
-- categorical version of CTT
|
||||
|
||||
open Category hiding (_∘_)
|
||||
open Functor
|
||||
|
||||
module CwF {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
open Category hiding (_∘_)
|
||||
open Functor
|
||||
open import Function
|
||||
open import Cubical
|
||||
|
||||
module _ {ℓa ℓb : Level} where
|
||||
private
|
||||
Obj = Σ[ A ∈ Set ℓa ] (A → Set ℓb)
|
||||
Arr : Obj → Obj → Set (ℓa ⊔ ℓb)
|
||||
Arr (A , B) (A' , B') = Σ[ f ∈ (A → A') ] ({x : A} → B x → B' (f x))
|
||||
one : {o : Obj} → Arr o o
|
||||
proj₁ one = λ x → x
|
||||
proj₂ one = λ b → b
|
||||
_:⊕:_ : {a b c : Obj} → Arr b c → Arr a b → Arr a c
|
||||
(g , g') :⊕: (f , f') = g ∘ f , g' ∘ f'
|
||||
|
||||
module _ {A B C D : Obj} {f : Arr A B} {g : Arr B C} {h : Arr C D} where
|
||||
:assoc: : (_:⊕:_ {A} {C} {D} h (_:⊕:_ {A} {B} {C} g f)) ≡ (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} h g) f)
|
||||
:assoc: = {!!}
|
||||
|
||||
module _ {A B : Obj} {f : Arr A B} where
|
||||
:ident: : (_:⊕:_ {A} {A} {B} f one) ≡ f × (_:⊕:_ {A} {B} {B} one f) ≡ f
|
||||
:ident: = {!!}
|
||||
|
||||
instance
|
||||
:isCategory: : IsCategory Obj Arr one (λ {a b c} → _:⊕:_ {a} {b} {c})
|
||||
:isCategory: = record
|
||||
{ assoc = λ {A} {B} {C} {D} {f} {g} {h} → :assoc: {A} {B} {C} {D} {f} {g} {h}
|
||||
; ident = {!!}
|
||||
}
|
||||
Fam : Category (lsuc (ℓa ⊔ ℓb)) (ℓa ⊔ ℓb)
|
||||
Fam = record
|
||||
{ Object = Obj
|
||||
; Arrow = Arr
|
||||
; 𝟙 = one
|
||||
; _∘_ = λ {a b c} → _:⊕:_ {a} {b} {c}
|
||||
}
|
||||
|
||||
Contexts = ℂ .Object
|
||||
Substitutions = ℂ .Arrow
|
||||
|
||||
|
|
Loading…
Reference in a new issue