Add notion of pre-category

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-05 14:37:25 +02:00
parent 8276deb4aa
commit 6c5b68a8ac
8 changed files with 272 additions and 211 deletions

View file

@ -72,16 +72,20 @@ module CatProduct { ' : Level} ( 𝔻 : Category ') where
= Σ≡ (fst .isIdentity) (fst 𝔻.isIdentity)
, Σ≡ (snd .isIdentity) (snd 𝔻.isIdentity)
isPreCategory : IsPreCategory rawProduct
IsPreCategory.isAssociative isPreCategory = Σ≡ .isAssociative 𝔻.isAssociative
IsPreCategory.isIdentity isPreCategory = isIdentity
IsPreCategory.arrowsAreSets isPreCategory = arrowsAreSets
postulate univalent : Univalence.Univalent isIdentity
instance
isCategory : IsCategory rawProduct
IsCategory.isAssociative isCategory = Σ≡ .isAssociative 𝔻.isAssociative
IsCategory.isIdentity isCategory = isIdentity
IsCategory.arrowsAreSets isCategory = arrowsAreSets
IsCategory.univalent isCategory = univalent
isCategory : IsCategory rawProduct
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalent
object : Category '
Category.raw object = rawProduct
Category.isCategory object = isCategory
fstF : Functor object
fstF = record

View file

@ -35,29 +35,31 @@ module _ (a b : Level) where
open import Cubical.NType.Properties
open import Cubical.Sigma
instance
isCategory : IsCategory RawFam
isCategory = record
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} isAssociative {A} {B} {C} {D} {f} {g} {h}
; isIdentity = λ {A} {B} {f} isIdentity {A} {B} {f = f}
; arrowsAreSets = λ {
{((A , hA) , famA)}
{((B , hB) , famB)}
setSig
{sA = setPi λ _ hB}
{sB = λ f
let
helpr : isSet ((a : A) fst (famA a) fst (famB (f a)))
helpr = setPi λ a setPi λ _ snd (famB (f a))
-- It's almost like above, but where the first argument is
-- implicit.
res : isSet ({a : A} fst (famA a) fst (famB (f a)))
res = {!!}
in res
}
}
; univalent = {!!}
isPreCategory : IsPreCategory RawFam
IsPreCategory.isAssociative isPreCategory
{A} {B} {C} {D} {f} {g} {h} = isAssociative {A} {B} {C} {D} {f} {g} {h}
IsPreCategory.isIdentity isPreCategory
{A} {B} {f} = isIdentity {A} {B} {f = f}
IsPreCategory.arrowsAreSets isPreCategory
{(A , hA) , famA} {(B , hB) , famB}
= setSig
{sA = setPi λ _ hB}
{sB = λ f
let
helpr : isSet ((a : A) fst (famA a) fst (famB (f a)))
helpr = setPi λ a setPi λ _ snd (famB (f a))
-- It's almost like above, but where the first argument is
-- implicit.
res : isSet ({a : A} fst (famA a) fst (famB (f a)))
res = {!!}
in res
}
isCategory : IsCategory RawFam
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = {!!}
Fam : Category (lsuc (a b)) (a b)
Category.raw Fam = RawFam
Category.isCategory Fam = isCategory

View file

@ -61,6 +61,12 @@ module _ {a b : Level} ( : Category a b) where
arrowsAreSets : isSet (Path .Arrow A B)
arrowsAreSets a b p q = {!!}
isPreCategory : IsPreCategory RawFree
IsPreCategory.isAssociative isPreCategory {f = f} {g} {h} = isAssociative {r = f} {g} {h}
IsPreCategory.isIdentity isPreCategory = isIdentity
IsPreCategory.arrowsAreSets isPreCategory = arrowsAreSets
module _ {A B : .Object} where
eqv : isEquiv (A B) (A B) (Univalence.id-to-iso isIdentity A B)
eqv = {!!}
@ -68,9 +74,7 @@ module _ {a b : Level} ( : Category a b) where
univalent = eqv
isCategory : IsCategory RawFree
IsCategory.isAssociative isCategory {f = f} {g} {h} = isAssociative {r = f} {g} {h}
IsCategory.isIdentity isCategory = isIdentity
IsCategory.arrowsAreSets isCategory = arrowsAreSets
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalent
Free : Category _ _

View file

@ -10,20 +10,28 @@ import Cat.Category.NaturalTransformation
module Fun {c c' d d' : Level} ( : Category c c') (𝔻 : Category d d') where
open NaturalTransformation 𝔻 public hiding (module Properties)
open NaturalTransformation.Properties 𝔻
private
module = Category
module 𝔻 = Category 𝔻
-- Functor categories. Objects are functors, arrows are natural transformations.
raw : RawCategory (c c' d d') (c c' d')
RawCategory.Object raw = Functor 𝔻
RawCategory.Arrow raw = NaturalTransformation
RawCategory.identity raw {F} = identity F
RawCategory._∘_ raw {F} {G} {H} = NT[_∘_] {F} {G} {H}
module _ where
-- Functor categories. Objects are functors, arrows are natural transformations.
raw : RawCategory (c c' d d') (c c' d')
RawCategory.Object raw = Functor 𝔻
RawCategory.Arrow raw = NaturalTransformation
RawCategory.identity raw {F} = identity F
RawCategory._∘_ raw {F} {G} {H} = NT[_∘_] {F} {G} {H}
open RawCategory raw hiding (identity)
open Univalence (λ {A} {B} {f} isIdentity {F = A} {B} {f})
module _ where
open RawCategory raw hiding (identity)
open NaturalTransformation.Properties 𝔻
isPreCategory : IsPreCategory raw
IsPreCategory.isAssociative isPreCategory {A} {B} {C} {D} = isAssociative {A} {B} {C} {D}
IsPreCategory.isIdentity isPreCategory {A} {B} = isIdentity {A} {B}
IsPreCategory.arrowsAreSets isPreCategory {F} {G} = naturalTransformationIsSet {F} {G}
open IsPreCategory isPreCategory hiding (identity)
module _ (F : Functor 𝔻) where
center : Σ[ G Object ] (F G)
@ -167,17 +175,15 @@ module Fun {c c' d d' : Level} ( : Category c c') (𝔻 : C
re-ve : (x : A B) reverse (obverse x) x
re-ve = {!!}
done : isEquiv (A B) (A B) (Univalence.id-to-iso (λ { {A} {B} isIdentity {F = A} {B}}) A B)
done : isEquiv (A B) (A B) (id-to-iso A B)
done = {!gradLemma obverse reverse ve-re re-ve!}
-- univalent : Univalent
-- univalent = done
univalent : Univalent
univalent = {!done!}
isCategory : IsCategory raw
IsCategory.isAssociative isCategory {A} {B} {C} {D} = isAssociative {A} {B} {C} {D}
IsCategory.isIdentity isCategory {A} {B} = isIdentity {A} {B}
IsCategory.arrowsAreSets isCategory {F} {G} = naturalTransformationIsSet {F} {G}
IsCategory.univalent isCategory = {!!}
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalent
Fun : Category (c c' d d') (c c' d')
Category.raw Fun = raw
@ -199,26 +205,26 @@ module _ { ' : Level} ( : Category ') where
; _∘_ = λ {F G H} NT[_∘_] {F = F} {G = G} {H = H}
}
isCategory : IsCategory raw
isCategory = record
{ isAssociative =
λ{ {A} {B} {C} {D} {f} {g} {h}
F.isAssociative {A} {B} {C} {D} {f} {g} {h}
}
; isIdentity =
λ{ {A} {B} {f}
F.isIdentity {A} {B} {f}
}
; arrowsAreSets =
λ{ {A} {B}
F.arrowsAreSets {A} {B}
}
; univalent =
λ{ {A} {B}
F.univalent {A} {B}
}
}
-- isCategory : IsCategory raw
-- isCategory = record
-- { isAssociative =
-- λ{ {A} {B} {C} {D} {f} {g} {h}
-- → F.isAssociative {A} {B} {C} {D} {f} {g} {h}
-- }
-- ; isIdentity =
-- λ{ {A} {B} {f}
-- → F.isIdentity {A} {B} {f}
-- }
-- ; arrowsAreSets =
-- λ{ {A} {B}
-- → F.arrowsAreSets {A} {B}
-- }
-- ; univalent =
-- λ{ {A} {B}
-- → F.univalent {A} {B}
-- }
-- }
Presh : Category ( lsuc ') ( ')
Category.raw Presh = raw
Category.isCategory Presh = isCategory
-- Presh : Category ( ⊔ lsuc ') (')
-- Category.raw Presh = raw
-- Category.isCategory Presh = isCategory

View file

@ -157,10 +157,12 @@ RawRel = record
; _∘_ = λ {A B C} S R λ {( a , c ) Σ[ b B ] ( (a , b) R × (b , c) S )}
}
RawIsCategoryRel : IsCategory RawRel
RawIsCategoryRel = record
{ isAssociative = funExt is-isAssociative
; isIdentity = funExt ident-l , funExt ident-r
; arrowsAreSets = {!!}
; univalent = {!!}
}
isPreCategory : IsPreCategory RawRel
IsPreCategory.isAssociative isPreCategory = funExt is-isAssociative
IsPreCategory.isIdentity isPreCategory = funExt ident-l , funExt ident-r
IsPreCategory.arrowsAreSets isPreCategory = {!!}
Rel : PreCategory _ _
PreCategory.raw Rel = RawRel
PreCategory.isPreCategory Rel = isPreCategory

View file

@ -34,16 +34,23 @@ module _ ( : Level) where
RawCategory.identity SetsRaw = Function.id
RawCategory._∘_ SetsRaw = Function._∘_
open RawCategory SetsRaw hiding (_∘_)
module _ where
private
open RawCategory SetsRaw hiding (_∘_)
isIdentity : IsIdentity Function.id
fst isIdentity = funExt λ _ refl
snd isIdentity = funExt λ _ refl
isIdentity : IsIdentity Function.id
fst isIdentity = funExt λ _ refl
snd isIdentity = funExt λ _ refl
open Univalence (λ {A} {B} {f} isIdentity {A} {B} {f})
arrowsAreSets : ArrowsAreSets
arrowsAreSets {B = (_ , s)} = setPi λ _ s
arrowsAreSets : ArrowsAreSets
arrowsAreSets {B = (_ , s)} = setPi λ _ s
isPreCat : IsPreCategory SetsRaw
IsPreCategory.isAssociative isPreCat = refl
IsPreCategory.isIdentity isPreCat {A} {B} = isIdentity {A} {B}
IsPreCategory.arrowsAreSets isPreCat {A} {B} = arrowsAreSets {A} {B}
open IsPreCategory isPreCat hiding (_∘_)
isIso = Eqv.Isomorphism
module _ {hA hB : hSet } where
@ -255,9 +262,7 @@ module _ ( : Level) where
univalent = from[Contr] univalent[Contr]
SetsIsCategory : IsCategory SetsRaw
IsCategory.isAssociative SetsIsCategory = refl
IsCategory.isIdentity SetsIsCategory {A} {B} = isIdentity {A} {B}
IsCategory.arrowsAreSets SetsIsCategory {A} {B} = arrowsAreSets {A} {B}
IsCategory.isPreCategory SetsIsCategory = isPreCat
IsCategory.univalent SetsIsCategory = univalent
𝓢𝓮𝓽 Sets : Category (lsuc )

View file

@ -203,15 +203,13 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
--
-- Sans `univalent` this would be what is referred to as a pre-category in
-- [HoTT].
record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc (a b)) where
record IsPreCategory {a b : Level} ( : RawCategory a b) : Set (lsuc (a b)) where
open RawCategory public
field
isAssociative : IsAssociative
isIdentity : IsIdentity identity
arrowsAreSets : ArrowsAreSets
open Univalence isIdentity public
field
univalent : Univalent
leftIdentity : {A B : Object} {f : Arrow A B} identity f f
leftIdentity {A} {B} {f} = fst (isIdentity {A = A} {B} {f})
@ -251,6 +249,83 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
iso→epi×mono : Isomorphism f Epimorphism {X = X} f × Monomorphism {X = X} f
iso→epi×mono iso = iso→epi iso , iso→mono iso
propIsAssociative : isProp IsAssociative
propIsAssociative x y i = arrowsAreSets _ _ x y i
propIsIdentity : {f : {A} Arrow A A} isProp (IsIdentity f)
propIsIdentity a b i
= arrowsAreSets _ _ (fst a) (fst b) i
, arrowsAreSets _ _ (snd a) (snd b) i
propArrowIsSet : isProp ( {A B} isSet (Arrow A B))
propArrowIsSet a b i = isSetIsProp a b i
propIsInverseOf : {A B f g} isProp (IsInverseOf {A} {B} f g)
propIsInverseOf x y = λ i
let
h : fst x fst y
h = arrowsAreSets _ _ (fst x) (fst y)
hh : snd x snd y
hh = arrowsAreSets _ _ (snd x) (snd y)
in h i , hh i
module _ {A B : Object} {f : Arrow A B} where
isoIsProp : isProp (Isomorphism f)
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
lemSig (λ g propIsInverseOf) a a' geq
where
geq : g g'
geq = begin
g ≡⟨ sym rightIdentity
g identity ≡⟨ cong (λ φ g φ) (sym ε')
g (f g') ≡⟨ isAssociative
(g f) g' ≡⟨ cong (λ φ φ g') η
identity g' ≡⟨ leftIdentity
g'
propIsInitial : I isProp (IsInitial I)
propIsInitial I x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow I X) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
propIsTerminal : T isProp (IsTerminal T)
propIsTerminal T x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow X T) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
record PreCategory (a b : Level) : Set (lsuc (a b)) where
field
raw : RawCategory a b
isPreCategory : IsPreCategory raw
open IsPreCategory isPreCategory public
record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc (a b)) where
field
isPreCategory : IsPreCategory
open IsPreCategory isPreCategory public
field
univalent : Univalent
-- | The formulation of univalence expressed with _≃_ is trivially admissable -
-- just "forget" the equivalence.
univalent≃ : Univalent≃
@ -264,58 +339,9 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
-- | All projections are propositions.
module Propositionality where
propIsAssociative : isProp IsAssociative
propIsAssociative x y i = arrowsAreSets _ _ x y i
propIsIdentity : {f : {A} Arrow A A} isProp (IsIdentity f)
propIsIdentity a b i
= arrowsAreSets _ _ (fst a) (fst b) i
, arrowsAreSets _ _ (snd a) (snd b) i
propArrowIsSet : isProp ( {A B} isSet (Arrow A B))
propArrowIsSet a b i = isSetIsProp a b i
propIsInverseOf : {A B f g} isProp (IsInverseOf {A} {B} f g)
propIsInverseOf x y = λ i
let
h : fst x fst y
h = arrowsAreSets _ _ (fst x) (fst y)
hh : snd x snd y
hh = arrowsAreSets _ _ (snd x) (snd y)
in h i , hh i
module _ {A B : Object} {f : Arrow A B} where
isoIsProp : isProp (Isomorphism f)
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
lemSig (λ g propIsInverseOf) a a' geq
where
geq : g g'
geq = begin
g ≡⟨ sym rightIdentity
g identity ≡⟨ cong (λ φ g φ) (sym ε')
g (f g') ≡⟨ isAssociative
(g f) g' ≡⟨ cong (λ φ φ g') η
identity g' ≡⟨ leftIdentity
g'
propUnivalent : isProp Univalent
propUnivalent a b i = propPi (λ iso propIsContr) a b i
propIsTerminal : T isProp (IsTerminal T)
propIsTerminal T x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow X T) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
-- | objects.
--
@ -353,20 +379,6 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
res i = p0 i , p1 i
-- Merely the dual of the above statement.
propIsInitial : I isProp (IsInitial I)
propIsInitial I x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow I X) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
propInitial : isProp Initial
propInitial Xi Yi = res
@ -404,6 +416,23 @@ module _ {a b : Level} ( : RawCategory a b) where
open RawCategory
open Univalence
private
module _ (x y : IsPreCategory ) where
module x = IsPreCategory x
module y = IsPreCategory y
-- In a few places I use the result of propositionality of the various
-- projections of `IsCategory` - Here I arbitrarily chose to use this
-- result from `x : IsCategory C`. I don't know which (if any) possibly
-- adverse effects this may have.
-- module Prop = X.Propositionality
propIsPreCategory : x y
IsPreCategory.isAssociative (propIsPreCategory i)
= x.propIsAssociative x.isAssociative y.isAssociative i
IsPreCategory.isIdentity (propIsPreCategory i)
= x.propIsIdentity x.isIdentity y.isIdentity i
IsPreCategory.arrowsAreSets (propIsPreCategory i)
= x.propArrowIsSet x.arrowsAreSets y.arrowsAreSets i
module _ (x y : IsCategory ) where
module X = IsCategory x
module Y = IsCategory y
@ -414,7 +443,7 @@ module _ {a b : Level} ( : RawCategory a b) where
module Prop = X.Propositionality
isIdentity : (λ _ IsIdentity identity) [ X.isIdentity Y.isIdentity ]
isIdentity = Prop.propIsIdentity X.isIdentity Y.isIdentity
isIdentity = X.propIsIdentity X.isIdentity Y.isIdentity
U : {a : IsIdentity identity}
(λ _ IsIdentity identity) [ X.isIdentity a ]
@ -434,10 +463,13 @@ module _ {a b : Level} ( : RawCategory a b) where
eqUni : U isIdentity Y.univalent
eqUni = helper Y.univalent
done : x y
IsCategory.isAssociative (done i) = Prop.propIsAssociative X.isAssociative Y.isAssociative i
IsCategory.isIdentity (done i) = isIdentity i
IsCategory.arrowsAreSets (done i) = Prop.propArrowIsSet X.arrowsAreSets Y.arrowsAreSets i
IsCategory.isPreCategory (done i)
= propIsPreCategory X.isPreCategory Y.isPreCategory i
IsCategory.univalent (done i) = eqUni i
-- IsCategory.isAssociative (done i) = Prop.propIsAssociative X.isAssociative Y.isAssociative i
-- IsCategory.isIdentity (done i) = isIdentity i
-- IsCategory.arrowsAreSets (done i) = Prop.propArrowIsSet X.arrowsAreSets Y.arrowsAreSets i
-- IsCategory.univalent (done i) = eqUni i
propIsCategory : isProp (IsCategory )
propIsCategory = done
@ -486,19 +518,25 @@ module _ {a b : Level} ( : Category a b) where
module Opposite {a b : Level} where
module _ ( : Category a b) where
private
module = Category
opRaw : RawCategory a b
RawCategory.Object opRaw = .Object
RawCategory.Arrow opRaw = Function.flip .Arrow
RawCategory.identity opRaw = .identity
RawCategory._∘_ opRaw = Function.flip ._∘_
module _ where
module = Category
opRaw : RawCategory a b
RawCategory.Object opRaw = .Object
RawCategory.Arrow opRaw = Function.flip .Arrow
RawCategory.identity opRaw = .identity
RawCategory._∘_ opRaw = Function.flip ._∘_
open RawCategory opRaw
open RawCategory opRaw
isIdentity : IsIdentity identity
isIdentity = swap .isIdentity
isIdentity : IsIdentity identity
isIdentity = swap .isIdentity
open Univalence isIdentity
isPreCategory : IsPreCategory opRaw
IsPreCategory.isAssociative isPreCategory = sym .isAssociative
IsPreCategory.isIdentity isPreCategory = isIdentity
IsPreCategory.arrowsAreSets isPreCategory = .arrowsAreSets
open IsPreCategory isPreCategory
module _ {A B : .Object} where
open import Cat.Equivalence as Equivalence hiding (_≅_)
@ -571,9 +609,7 @@ module Opposite {a b : Level} where
univalent = Equiv≃.fromIso _ _ h
isCategory : IsCategory opRaw
IsCategory.isAssociative isCategory = sym .isAssociative
IsCategory.isIdentity isCategory = isIdentity
IsCategory.arrowsAreSets isCategory = .arrowsAreSets
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalent
opposite : Category a b

View file

@ -122,48 +122,54 @@ module Try0 {a b : Level} { : Category a b}
}
}
open RawCategory raw
module _ where
open RawCategory raw
propEqs : {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
(xy : .Arrow X Y) isProp ( [ ya xy ] xa × [ yb xy ] xb)
propEqs xs = propSig (.arrowsAreSets _ _) (\ _ .arrowsAreSets _ _)
propEqs : {X' : Object}{Y' : Object} (let X , xa , xb = X') (let Y , ya , yb = Y')
(xy : .Arrow X Y) isProp ( [ ya xy ] xa × [ yb xy ] xb)
propEqs xs = propSig (.arrowsAreSets _ _) (\ _ .arrowsAreSets _ _)
isAssocitaive : IsAssociative
isAssocitaive {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
where
l = hh (gg ff)
r = hh gg ff
-- s0 : h .∘ (g .∘ f) ≡ h .∘ g .∘ f
s0 : fst l fst r
s0 = .isAssociative {f = f} {g} {h}
isIdentity : IsIdentity identity
isIdentity {AA@(A , a0 , a1)} {BB@(B , b0 , b1)} {f , f0 , f1} = leftIdentity , rightIdentity
where
leftIdentity : identity (f , f0 , f1) (f , f0 , f1)
leftIdentity i = l i , lemPropF propEqs l {snd L} {snd R} i
isAssociative : IsAssociative
isAssociative {A'@(A , a0 , a1)} {B , _} {C , c0 , c1} {D'@(D , d0 , d1)} {ff@(f , f0 , f1)} {gg@(g , g0 , g1)} {hh@(h , h0 , h1)} i
= s0 i , lemPropF propEqs s0 {P.snd l} {P.snd r} i
where
L = identity (f , f0 , f1)
R : Arrow AA BB
R = f , f0 , f1
l : fst L fst R
l = .leftIdentity
rightIdentity : (f , f0 , f1) identity (f , f0 , f1)
rightIdentity i = l i , lemPropF propEqs l {snd L} {snd R} i
l = hh (gg ff)
r = hh gg ff
-- s0 : h .∘ (g .∘ f) ≡ h .∘ g .∘ f
s0 : fst l fst r
s0 = .isAssociative {f = f} {g} {h}
isIdentity : IsIdentity identity
isIdentity {AA@(A , a0 , a1)} {BB@(B , b0 , b1)} {f , f0 , f1} = leftIdentity , rightIdentity
where
L = (f , f0 , f1) identity
R : Arrow AA BB
R = (f , f0 , f1)
l : [ f .identity ] f
l = .rightIdentity
leftIdentity : identity (f , f0 , f1) (f , f0 , f1)
leftIdentity i = l i , lemPropF propEqs l {snd L} {snd R} i
where
L = identity (f , f0 , f1)
R : Arrow AA BB
R = f , f0 , f1
l : fst L fst R
l = .leftIdentity
rightIdentity : (f , f0 , f1) identity (f , f0 , f1)
rightIdentity i = l i , lemPropF propEqs l {snd L} {snd R} i
where
L = (f , f0 , f1) identity
R : Arrow AA BB
R = (f , f0 , f1)
l : [ f .identity ] f
l = .rightIdentity
arrowsAreSets : ArrowsAreSets
arrowsAreSets {X , x0 , x1} {Y , y0 , y1}
= sigPresNType {n = ⟨0⟩} .arrowsAreSets λ a propSet (propEqs _)
arrowsAreSets : ArrowsAreSets
arrowsAreSets {X , x0 , x1} {Y , y0 , y1}
= sigPresNType {n = ⟨0⟩} .arrowsAreSets λ a propSet (propEqs _)
open Univalence isIdentity
isPreCat : IsPreCategory raw
IsPreCategory.isAssociative isPreCat = isAssociative
IsPreCategory.isIdentity isPreCat = isIdentity
IsPreCategory.arrowsAreSets isPreCat = arrowsAreSets
open IsPreCategory isPreCat
-- module _ (X : Object) where
-- center : Σ Object (X ≅_)
@ -327,12 +333,8 @@ module Try0 {a b : Level} { : Category a b}
res = Equiv≃.fromIso _ _ iso
isCat : IsCategory raw
isCat = record
{ isAssociative = isAssocitaive
; isIdentity = isIdentity
; arrowsAreSets = arrowsAreSets
; univalent = univalent
}
IsCategory.isPreCategory isCat = isPreCat
IsCategory.univalent isCat = univalent
cat : Category _ _
cat = record