Add the category of sets
This commit is contained in:
parent
fa5d380ee2
commit
6ca9368891
34
src/Category/Sets.agda
Normal file
34
src/Category/Sets.agda
Normal file
|
@ -0,0 +1,34 @@
|
||||||
|
module Category.Sets where
|
||||||
|
|
||||||
|
open import Cubical.PathPrelude
|
||||||
|
open import Agda.Primitive
|
||||||
|
open import Category
|
||||||
|
|
||||||
|
-- Sets are built-in to Agda. The set of all small sets is called Set.
|
||||||
|
|
||||||
|
Fun : {ℓ : Level} → ( T U : Set ℓ ) → Set ℓ
|
||||||
|
Fun T U = T → U
|
||||||
|
|
||||||
|
Sets : {ℓ : Level} → Category {lsuc ℓ} {ℓ}
|
||||||
|
Sets {ℓ} = record
|
||||||
|
{ Object = Set ℓ
|
||||||
|
; Arrow = λ T U → Fun {ℓ} T U
|
||||||
|
; 𝟙 = λ x → x
|
||||||
|
; _⊕_ = λ g f x → g ( f x )
|
||||||
|
; assoc = refl
|
||||||
|
; ident = funExt (λ x → refl) , funExt (λ x → refl)
|
||||||
|
}
|
||||||
|
|
||||||
|
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where
|
||||||
|
private
|
||||||
|
C-Obj = Object ℂ
|
||||||
|
_+_ = Arrow ℂ
|
||||||
|
|
||||||
|
RepFunctor : Functor ℂ Sets
|
||||||
|
RepFunctor =
|
||||||
|
record
|
||||||
|
{ F = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B
|
||||||
|
; f = λ { {c' = c'} f g → {!HomFromArrow {ℂ = } c' g!}}
|
||||||
|
; ident = {!!}
|
||||||
|
; distrib = {!!}
|
||||||
|
}
|
Loading…
Reference in a new issue