Add note about proving 9.1.9

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-10 17:33:22 +02:00
parent 772e6778f3
commit 6d59a8f79e

View file

@ -150,7 +150,7 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
where
module _ (f : Univalent[Andrea]) (A : Object) where
aux : isContr (Σ[ B Object ] A B)
aux = ?
aux = {!!}
step : isContr (Σ Object (A ≅_))
step = {!subst {P = isContr} {!!} aux!}
@ -329,6 +329,21 @@ module _ {a b : Level} ( : RawCategory a b) where
inverse-from-to-iso' : AreInverses (idToIso A B) isoToId
inverse-from-to-iso' = snd iso
-- lemma 9.1.9 in hott
module _ {a a' b b' : Object}
(p : a a') (q : b b') (f : Arrow a b)
where
private
q* : Arrow b b'
q* = fst (idToIso b b' q)
p~ : Arrow a' a
p~ = fst (snd (idToIso _ _ p))
pq : Arrow a b Arrow a' b'
pq i = Arrow (p i) (q i)
9-1-9 : coe pq f q* f p~
9-1-9 = transpP {!!} {!!}
-- | All projections are propositions.
module Propositionality where
-- | Terminal objects are propositional - a.k.a uniqueness of terminal