Add note about proving 9.1.9
This commit is contained in:
parent
772e6778f3
commit
6d59a8f79e
|
@ -150,7 +150,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
where
|
where
|
||||||
module _ (f : Univalent[Andrea]) (A : Object) where
|
module _ (f : Univalent[Andrea]) (A : Object) where
|
||||||
aux : isContr (Σ[ B ∈ Object ] A ≡ B)
|
aux : isContr (Σ[ B ∈ Object ] A ≡ B)
|
||||||
aux = ?
|
aux = {!!}
|
||||||
|
|
||||||
step : isContr (Σ Object (A ≅_))
|
step : isContr (Σ Object (A ≅_))
|
||||||
step = {!subst {P = isContr} {!!} aux!}
|
step = {!subst {P = isContr} {!!} aux!}
|
||||||
|
@ -329,6 +329,21 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
inverse-from-to-iso' : AreInverses (idToIso A B) isoToId
|
inverse-from-to-iso' : AreInverses (idToIso A B) isoToId
|
||||||
inverse-from-to-iso' = snd iso
|
inverse-from-to-iso' = snd iso
|
||||||
|
|
||||||
|
-- lemma 9.1.9 in hott
|
||||||
|
module _ {a a' b b' : Object}
|
||||||
|
(p : a ≡ a') (q : b ≡ b') (f : Arrow a b)
|
||||||
|
where
|
||||||
|
private
|
||||||
|
q* : Arrow b b'
|
||||||
|
q* = fst (idToIso b b' q)
|
||||||
|
p~ : Arrow a' a
|
||||||
|
p~ = fst (snd (idToIso _ _ p))
|
||||||
|
pq : Arrow a b ≡ Arrow a' b'
|
||||||
|
pq i = Arrow (p i) (q i)
|
||||||
|
|
||||||
|
9-1-9 : coe pq f ≡ q* ∘ f ∘ p~
|
||||||
|
9-1-9 = transpP {!!} {!!}
|
||||||
|
|
||||||
-- | All projections are propositions.
|
-- | All projections are propositions.
|
||||||
module Propositionality where
|
module Propositionality where
|
||||||
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
|
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
|
||||||
|
|
Loading…
Reference in a new issue