Final presentation
This commit is contained in:
parent
5a748c57f0
commit
6f275247dd
|
@ -7,6 +7,15 @@ Remember crowd-control.
|
|||
Leave out:
|
||||
lemPropF
|
||||
|
||||
Outline
|
||||
-------
|
||||
|
||||
Introduction
|
||||
|
||||
A formalization of Category Theory in cubical Agda.
|
||||
|
||||
Cubical Agda: A constructive interpretation of functional
|
||||
extensionality and univalence
|
||||
|
||||
Talk about structure of library:
|
||||
===
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
\documentclass[a4paper,handout]{beamer}
|
||||
\usetheme{metropolis}
|
||||
\beamertemplatenavigationsymbolsempty
|
||||
\documentclass[a4paper]{beamer}
|
||||
%% \usecolortheme[named=seagull]{structure}
|
||||
|
||||
\input{packages.tex}
|
||||
|
@ -19,60 +17,39 @@
|
|||
\institute{Chalmers University of Technology}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\frame{\titlepage}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Motivating example}
|
||||
\framesubtitle{Functional extensionality}
|
||||
Consider the functions
|
||||
\begin{align*}
|
||||
\var{zeroLeft} & ≜ \lambda (n \tp \bN) \mto (0 + n \tp \bN) \\
|
||||
\var{zeroRight} & ≜ \lambda (n \tp \bN) \mto (n + 0 \tp \bN)
|
||||
\end{align*}
|
||||
\pause
|
||||
We have
|
||||
%
|
||||
$$
|
||||
∏_{n \tp \bN} \var{zeroLeft}\ n ≡ \var{zeroRight}\ n
|
||||
$$
|
||||
%
|
||||
\pause
|
||||
But not
|
||||
%
|
||||
$$
|
||||
\var{zeroLeft} ≡ \var{zeroRight}
|
||||
$$
|
||||
%
|
||||
\pause
|
||||
We need
|
||||
%
|
||||
$$
|
||||
\funExt \tp ∏_{a \tp A} f\ a ≡ g\ a → f ≡ g
|
||||
$$
|
||||
\frametitle{Introduction}
|
||||
Category Theory: The study of abstract functions. Slogan: ``It's the
|
||||
arrows that matter''\pause
|
||||
|
||||
Objects are equal ``up to isomorphism''. Univalence makes this notion
|
||||
precise.\pause
|
||||
|
||||
Agda does not permit proofs of univalence. Cubical Agda admits
|
||||
this.\pause
|
||||
|
||||
Goal: Construct a category whose terminal objects are (equivalent to)
|
||||
products. Use this to conclude that products are propositions, not a
|
||||
structure on a category.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Motivating example}
|
||||
\framesubtitle{Univalence}
|
||||
Consider the set
|
||||
$\{x \mid \phi\ x \land \psi\ x\}$
|
||||
\pause
|
||||
\frametitle{Outline}
|
||||
The path type
|
||||
|
||||
If we show $∀ x . \psi\ x ≡ \top$
|
||||
then we want to conclude
|
||||
$\{x \mid \phi\ x \land \psi\ x\} ≡ \{x \mid \phi\ x\}$
|
||||
\pause
|
||||
Definition of a (pre-) category
|
||||
|
||||
We need univalence:
|
||||
$$(A ≃ B) ≃ (A ≡ B)$$
|
||||
\pause
|
||||
%
|
||||
We will return to $≃$, but for now think of it as an
|
||||
isomorphism, so it induces maps:
|
||||
\begin{align*}
|
||||
\var{toPath} & \tp (A ≃ B) → (A ≡ B) \\
|
||||
\var{toEquiv} & \tp (A ≡ B) → (A ≃ B)
|
||||
\end{align*}
|
||||
1-categories
|
||||
|
||||
Univalent (proper) categories
|
||||
|
||||
The category of spans
|
||||
\end{frame}
|
||||
|
||||
\section{Paths}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{Definition}
|
||||
|
@ -81,7 +58,7 @@
|
|||
\Path \tp (P \tp \I → \MCU) → P\ 0 → P\ 1 → \MCU
|
||||
\end{equation*}
|
||||
\pause
|
||||
For $P \tp \I → \MCU$, $A \tp \MCU$ and $a_0, a_1 \tp A$
|
||||
For $P \tp \I → \MCU$ and $a_0 \tp P\ 0$, $a_1 \tp P\ 1$
|
||||
inhabitants of $\Path\ P\ a_0\ a_1$ are like functions
|
||||
%
|
||||
$$
|
||||
|
@ -96,104 +73,7 @@
|
|||
a_0 ≡ a_1 ≜ \Path\ (\var{const}\ A)\ a_0\ a_1
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{Functional extenstionality}
|
||||
$$
|
||||
\funExt & \tp ∏_{a \tp A} f\ a ≡ g\ a → f ≡ g
|
||||
$$
|
||||
\pause
|
||||
$$
|
||||
\funExt\ p ≜ λ i\ a → p\ a\ i
|
||||
$$
|
||||
\pause
|
||||
$$
|
||||
\funExt\ (\var{const}\ \refl)
|
||||
\tp
|
||||
\var{zeroLeft} ≡ \var{zeroRight}
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{Homotopy levels}
|
||||
\begin{align*}
|
||||
& \isContr && \tp \MCU → \MCU \\
|
||||
& \isContr\ A && ≜ ∑_{c \tp A} ∏_{a \tp A} a ≡ c
|
||||
\end{align*}
|
||||
\pause
|
||||
\begin{align*}
|
||||
& \isProp && \tp \MCU → \MCU \\
|
||||
& \isProp\ A && ≜ ∏_{a_0, a_1 \tp A} a_0 ≡ a_1
|
||||
\end{align*}
|
||||
\pause
|
||||
\begin{align*}
|
||||
& \isSet && \tp \MCU → \MCU \\
|
||||
& \isSet\ A && ≜ ∏_{a_0, a_1 \tp A} \isProp\ (a_0 ≡ a_1)
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
& \isGroupoid && \tp \MCU → \MCU \\
|
||||
& \isGroupoid\ A && ≜ ∏_{a_0, a_1 \tp A} \isSet\ (a_0 ≡ a_1)
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{A few lemmas}
|
||||
Let $D$ be a type-family:
|
||||
$$
|
||||
D \tp ∏_{b \tp A} ∏_{p \tp a ≡ b} \MCU
|
||||
$$
|
||||
%
|
||||
\pause
|
||||
And $d$ and in inhabitant of $D$ at $\refl$:
|
||||
%
|
||||
$$
|
||||
d \tp D\ a\ \refl
|
||||
$$
|
||||
%
|
||||
\pause
|
||||
We then have the function:
|
||||
%
|
||||
$$
|
||||
\pathJ\ D\ d \tp ∏_{b \tp A} ∏_{p \tp a ≡ b} D\ b\ p
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{A few lemmas}
|
||||
Given
|
||||
\begin{align*}
|
||||
A & \tp \MCU \\
|
||||
P & \tp A → \MCU \\
|
||||
\var{propP} & \tp ∏_{x \tp A} \isProp\ (P\ x) \\
|
||||
p & \tp a_0 ≡ a_1 \\
|
||||
p_0 & \tp P\ a_0 \\
|
||||
p_1 & \tp P\ a_1
|
||||
\end{align*}
|
||||
%
|
||||
We have
|
||||
$$
|
||||
\lemPropF\ \var{propP}\ p
|
||||
\tp
|
||||
\Path\ (\lambda\; i \mto P\ (p\ i))\ p_0\ p_1
|
||||
$$
|
||||
%
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Paths}
|
||||
\framesubtitle{A few lemmas}
|
||||
$∏$ preserves $\isProp$:
|
||||
$$
|
||||
\mathit{propPi}
|
||||
\tp
|
||||
\left(∏_{a \tp A} \isProp\ (P\ a)\right)
|
||||
→ \isProp\ \left(∏_{a \tp A} P\ a\right)
|
||||
$$
|
||||
\pause
|
||||
$∑$ preserves $\isProp$:
|
||||
$$
|
||||
\mathit{propSig} \tp \isProp\ A → \left(∏_{a \tp A} \isProp\ (P\ a)\right) → \isProp\ \left(∑_{a \tp A} P\ a\right)
|
||||
$$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Pre categories}
|
||||
\framesubtitle{Definition}
|
||||
|
@ -216,59 +96,46 @@
|
|||
×
|
||||
(f \lll \identity ≡ f)
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Pre categories}
|
||||
\framesubtitle{1-categories}
|
||||
Cubical Agda does not admit \emph{Uniqueness of Identity Proofs}
|
||||
(UIP). Rather there is a hierarchy of \emph{Homotopy Types}:
|
||||
Contractible types, mere propositions, sets, groupoids, \dots
|
||||
|
||||
\pause
|
||||
1-categories:
|
||||
$$
|
||||
\isSet\ (\Arrow\ A\ B)
|
||||
$$
|
||||
\pause
|
||||
\begin{align*}
|
||||
\isSet & \tp \MCU → \MCU \\
|
||||
\isSet\ A & ≜ ∏_{a_0, a_1 \tp A} \isProp\ (a_0 ≡ a_1)
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Pre categories}
|
||||
\framesubtitle{Propositionality}
|
||||
$$
|
||||
\isProp\ \left( (\identity \comp f ≡ f) × (f \comp \identity ≡ f) \right)
|
||||
$$
|
||||
\pause
|
||||
\begin{align*}
|
||||
\isProp\ \IsPreCategory
|
||||
\end{align*}
|
||||
\pause
|
||||
\begin{align*}
|
||||
\var{isAssociative} & \tp \var{IsAssociative}\\
|
||||
\isIdentity & \tp \var{IsIdentity}\\
|
||||
\var{arrowsAreSets} & \tp \var{ArrowsAreSets}
|
||||
\end{align*}
|
||||
\pause
|
||||
\begin{align*}
|
||||
& \var{propIsAssociative} && a.\var{isAssociative}\
|
||||
&& b.\var{isAssociative} && i \\
|
||||
& \propIsIdentity && a.\isIdentity\
|
||||
&& b.\isIdentity && i \\
|
||||
& \var{propArrowsAreSets} && a.\var{arrowsAreSets}\
|
||||
&& b.\var{arrowsAreSets} && i
|
||||
\end{align*}
|
||||
\frametitle{Outline}
|
||||
The path type \ensuremath{\checkmark}
|
||||
|
||||
Definition of a (pre-) category \ensuremath{\checkmark}
|
||||
|
||||
1-categories \ensuremath{\checkmark}
|
||||
|
||||
Univalent (proper) categories
|
||||
|
||||
The category of spans
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Categories}
|
||||
\framesubtitle{Univalence}
|
||||
\begin{align*}
|
||||
\var{IsIdentity} & ≜
|
||||
∏_{A\ B \tp \Object} ∏_{f \tp \Arrow\ A\ B} \phi\ f
|
||||
%% \\
|
||||
%% & \mathrel{\ } \identity \lll f ≡ f × f \lll \identity ≡ f
|
||||
\end{align*}
|
||||
where
|
||||
$$
|
||||
\phi\ f ≜
|
||||
( \identity \lll f ≡ f )
|
||||
×
|
||||
( f \lll \identity ≡ f)
|
||||
$$
|
||||
\pause
|
||||
Let $\approxeq$ denote isomorphism of objects. We can then construct
|
||||
the identity isomorphism in any category:
|
||||
$$
|
||||
\identity , \identity , \var{isIdentity} \tp A \approxeq A
|
||||
(\identity , \identity , \var{isIdentity}) \tp A \approxeq A
|
||||
$$
|
||||
\pause
|
||||
Likewise since paths are substitutive we can promote a path to an isomorphism:
|
||||
|
@ -292,50 +159,22 @@
|
|||
\pause%
|
||||
$$(A ≡ B) ≅ (A \approxeq B)$$
|
||||
\pause%
|
||||
Name the above maps:
|
||||
$$\idToIso \tp A ≡ B → A ≊ B$$
|
||||
%
|
||||
Name the inverse of $\idToIso$:
|
||||
$$\isoToId \tp (A \approxeq B) → (A ≡ B)$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Categories}
|
||||
\framesubtitle{Propositionality}
|
||||
$$
|
||||
\isProp\ \IsCategory = ∏_{a, b \tp \IsCategory} a ≡ b
|
||||
$$
|
||||
\pause
|
||||
So, for
|
||||
$$
|
||||
a\ b \tp \IsCategory
|
||||
$$
|
||||
the proof obligation is the pair:
|
||||
%
|
||||
\frametitle{Propositionality of products}
|
||||
Construct a category for which it is the case that the terminal
|
||||
objects are equivalent to products:
|
||||
\begin{align*}
|
||||
p & \tp a.\isPreCategory ≡ b.\isPreCategory \\
|
||||
& \mathrel{\ } \Path\ (\lambda\; i → (p\ i).Univalent)\ a.\isPreCategory\ b.\isPreCategory
|
||||
\var{Terminal} ≃ \var{Product}\ ℂ\ 𝒜\ ℬ
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Categories}
|
||||
\framesubtitle{Propositionality, cont'd}
|
||||
First path given by:
|
||||
$$
|
||||
p
|
||||
≜
|
||||
\var{propIsPreCategory}\ a\ b
|
||||
\tp
|
||||
a.\isPreCategory ≡ b.\isPreCategory
|
||||
$$
|
||||
\pause
|
||||
Use $\lemPropF$ for the latter.
|
||||
\pause
|
||||
%
|
||||
Univalence is indexed by an identity proof. So $A ≜
|
||||
IsIdentity\ identity$ and $B ≜ \var{Univalent}$.
|
||||
|
||||
\pause
|
||||
And since equivalences preserve homotopy levels we get:
|
||||
%
|
||||
$$
|
||||
\lemPropF\ \var{propUnivalent}\ p
|
||||
\isProp\ \left(\var{Product}\ \bC\ 𝒜\ ℬ\right)
|
||||
$$
|
||||
\end{frame}
|
||||
|
||||
|
@ -343,18 +182,18 @@
|
|||
\frametitle{Categories}
|
||||
\framesubtitle{A theorem}
|
||||
%
|
||||
Let the isomorphism $(ι, \inv{ι}) \tp A \approxeq B$.
|
||||
Let the isomorphism $(ι, \inv{ι}, \var{inv}) \tp A \approxeq B$.
|
||||
%
|
||||
\pause
|
||||
%
|
||||
The isomorphism induces the path
|
||||
%
|
||||
$$
|
||||
p ≜ \idToIso\ (\iota, \inv{\iota}) \tp A ≡ B
|
||||
p ≜ \isoToId\ (\iota, \inv{\iota}, \var{inv}) \tp A ≡ B
|
||||
$$
|
||||
%
|
||||
\pause
|
||||
and consequently an arrow:
|
||||
and consequently a path on arrows:
|
||||
%
|
||||
$$
|
||||
p_{\var{dom}} ≜ \congruence\ (λ x → \Arrow\ x\ X)\ p
|
||||
|
@ -377,7 +216,7 @@
|
|||
\framesubtitle{A theorem, proof}
|
||||
\begin{align*}
|
||||
\var{coe}\ p_{\var{dom}}\ f
|
||||
& ≡ f \lll \inv{(\idToIso\ p)} && \text{By path-induction} \\
|
||||
& ≡ f \lll (\idToIso\ p)_1 && \text{By path-induction} \\
|
||||
& ≡ f \lll \inv{\iota}
|
||||
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
|
||||
\end{align*}
|
||||
|
@ -401,7 +240,7 @@
|
|||
The base-case becomes:
|
||||
$$
|
||||
d \tp D\ A\ \refl =
|
||||
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}
|
||||
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}\right)
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
|
@ -413,20 +252,21 @@
|
|||
$$
|
||||
\pause
|
||||
\begin{align*}
|
||||
\var{coe}\ \refl^*\ f
|
||||
\var{coe}\ \refl_{\var{dom}}\ f
|
||||
& =
|
||||
\var{coe}\ \refl\ f \\
|
||||
& ≡ f
|
||||
&& \text{$\refl$ is a neutral element for $\var{coe}$}\\
|
||||
&& \text{neutral element for $\var{coe}$}\\
|
||||
& ≡ f \lll \identity \\
|
||||
& ≡ f \lll \var{subst}\ \refl\ \identity
|
||||
&& \text{$\refl$ is a neutral element for $\var{subst}$}\\
|
||||
&& \text{neutral element for $\var{subst}$}\\
|
||||
& ≡ f \lll \inv{(\idToIso\ \refl)}
|
||||
&& \text{By definition of $\idToIso$}\\
|
||||
\end{align*}
|
||||
\pause
|
||||
In conclusion, the theorem is inhabited by:
|
||||
$$
|
||||
\label{eq:pathJ-example}
|
||||
\pathJ\ D\ d\ B\ p
|
||||
\var{pathInd}\ D\ d\ B\ p
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
|
@ -437,28 +277,26 @@
|
|||
\pause
|
||||
Objects:
|
||||
$$
|
||||
∑_{X \tp Object} \Arrow\ X\ \pairA × \Arrow\ X\ \pairB
|
||||
∑_{X \tp Object} (\Arrow\ X\ \pairA) × (\Arrow\ X\ \pairB)
|
||||
$$
|
||||
\pause
|
||||
%
|
||||
Arrows between objects $A ,\ a_{\pairA} ,\ a_{\pairB}$ and
|
||||
$B ,\ b_{\pairA} ,\ b_{\pairB}$:
|
||||
Arrows between objects $(A , a_{\pairA} , a_{\pairB})$ and
|
||||
$(B , b_{\pairA} , b_{\pairB})$:
|
||||
%
|
||||
$$
|
||||
∑_{f \tp \Arrow\ A\ B}
|
||||
b_{\pairA} \lll f ≡ a_{\pairA} ×
|
||||
b_{\pairB} \lll f ≡ a_{\pairB}
|
||||
(b_{\pairA} \lll f ≡ a_{\pairA}) ×
|
||||
(b_{\pairB} \lll f ≡ a_{\pairB})
|
||||
$$
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{Span category}
|
||||
\framesubtitle{Univalence}
|
||||
\begin{align*}
|
||||
\label{eq:univ-0}
|
||||
(X , x_{𝒜} , x_{ℬ}) ≡ (Y , y_{𝒜} , y_{ℬ})
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\label{eq:univ-1}
|
||||
\begin{split}
|
||||
p \tp & X ≡ Y \\
|
||||
& \Path\ (λ i → \Arrow\ (p\ i)\ 𝒜)\ x_{𝒜}\ y_{𝒜} \\
|
||||
|
@ -524,7 +362,6 @@
|
|||
%
|
||||
\begin{align*}
|
||||
\begin{split}
|
||||
\label{eq:product-paths}
|
||||
& \Path\ (λ i → \widetilde{p}_{𝒜}\ i)\ x_{𝒜}\ y_{𝒜}
|
||||
\end{split}
|
||||
\end{align*}
|
||||
|
@ -578,17 +415,15 @@
|
|||
\framesubtitle{Monoidal form}
|
||||
%
|
||||
\begin{align*}
|
||||
\EndoR & \tp \Endo ℂ \\
|
||||
\EndoR & \tp \Functor\ ℂ\ ℂ \\
|
||||
\pureNT
|
||||
& \tp \NT{\EndoR^0}{\EndoR} \\
|
||||
& \tp \NT{\widehat{\identity}}{\EndoR} \\
|
||||
\joinNT
|
||||
& \tp \NT{\EndoR^2}{\EndoR}
|
||||
& \tp \NT{(\EndoR \oplus \EndoR)}{\EndoR}
|
||||
\end{align*}
|
||||
\pause
|
||||
%
|
||||
Let $\fmap$ be the map on arrows of $\EndoR$. Likewise
|
||||
$\pure$ and $\join$ are the maps of the natural transformations
|
||||
$\pureNT$ and $\joinNT$ respectively.
|
||||
Let $\fmap$ be the map on arrows of $\EndoR$.
|
||||
%
|
||||
\begin{align*}
|
||||
\join \lll \fmap\ \join
|
||||
|
@ -623,11 +458,8 @@
|
|||
\pause
|
||||
%
|
||||
\begin{align*}
|
||||
\label{eq:monad-kleisli-laws-0}
|
||||
\bind\ \pure & ≡ \identity_{\omapR\ X} \\
|
||||
\label{eq:monad-kleisli-laws-1}
|
||||
\pure \fish f & ≡ f \\
|
||||
\label{eq:monad-kleisli-laws-2}
|
||||
(\bind\ f) \rrr (\bind\ g) & ≡ \bind\ (f \fish g)
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
|
@ -647,7 +479,8 @@
|
|||
\join ≜ \bind\ \identity
|
||||
$$
|
||||
\pause
|
||||
The laws are logically equivalent. So we get:
|
||||
The laws are logically equivalent. Since logical equivalence is
|
||||
enough for as an equivalence of types for propositions we get:
|
||||
%
|
||||
$$
|
||||
\var{Monoidal} ≃ \var{Kleisli}
|
||||
|
|
Loading…
Reference in a new issue