Tidy up proof a bit

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-06 09:39:48 +01:00
parent 35419ad86e
commit 7647a452cd

View file

@ -72,54 +72,37 @@ module Monoidal {a b : Level} ( : Category a b) where
f
isDistributive : IsDistributive
isDistributive {X} {Y} {Z} g f = sym done
isDistributive {X} {Y} {Z} g f = sym aux
where
module R² = Functor F[ R R ]
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
distrib3 : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
distrib {a = a} {b} {c} = begin
R.func→ (a b c) ≡⟨ distr
R.func→ (a b) R.func→ c ≡⟨ cong (_∘ _) distr
distrib3 {a = a} {b} {c} = begin
R.func→ (a b c) ≡⟨ R.isDistributive
R.func→ (a b) R.func→ c ≡⟨ cong (_∘ _) R.isDistributive
R.func→ a R.func→ b R.func→ c
where
distr = R.isDistributive
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
comm {a = a} {b} {c} {d} = begin
a (b c d) ≡⟨⟩
a ((b c) d) ≡⟨ cong (_∘_ a) (sym asc)
a (b (c d)) ≡⟨ asc
(a b) (c d) ≡⟨ asc
((a b) c) d ≡⟨⟩
a b c d
where
asc = .isAssociative
lemmm : joinT Z R.func→ (joinT Z) joinT Z joinT (R.func* Z)
lemmm = isAssociative
lem4 : joinT (R.func* Z) R².func→ g R.func→ g joinT Y
lem4 = joinN g
done = begin
aux = begin
joinT Z R.func→ (joinT Z R.func→ g f)
≡⟨ cong (λ φ joinT Z φ) distrib
≡⟨ cong (λ φ joinT Z φ) distrib3
joinT Z (R.func→ (joinT Z) R.func→ (R.func→ g) R.func→ f)
≡⟨⟩
joinT Z (R.func→ (joinT Z) R².func→ g R.func→ f)
≡⟨ cong (_∘_ (joinT Z)) (sym .isAssociative) -- ●-solver?
≡⟨ cong (_∘_ (joinT Z)) (sym .isAssociative)
joinT Z (R.func→ (joinT Z) (R².func→ g R.func→ f))
≡⟨ .isAssociative
(joinT Z R.func→ (joinT Z)) (R².func→ g R.func→ f)
≡⟨ cong (λ φ φ (R².func→ g R.func→ f)) isAssociative
(joinT Z joinT (R.func* Z)) (R².func→ g R.func→ f)
≡⟨ .isAssociative -- ●-solver?
≡⟨ .isAssociative
joinT Z joinT (R.func* Z) R².func→ g R.func→ f
≡⟨⟩ -- ●-solver + lem4
≡⟨⟩
((joinT Z joinT (R.func* Z)) R².func→ g) R.func→ f
≡⟨ cong (_∘ R.func→ f) (sym .isAssociative)
(joinT Z (joinT (R.func* Z) R².func→ g)) R.func→ f
≡⟨ cong (λ φ φ R.func→ f) (cong (_∘_ (joinT Z)) lem4)
(joinT Z (R.func→ g joinT Y)) R.func→ f ≡⟨ cong (_∘ R.func→ f) .isAssociative
≡⟨ cong (λ φ φ R.func→ f) (cong (_∘_ (joinT Z)) (joinN g))
(joinT Z (R.func→ g joinT Y)) R.func→ f
≡⟨ cong (_∘ R.func→ f) .isAssociative
joinT Z R.func→ g joinT Y R.func→ f
≡⟨ sym (Category.isAssociative )
joinT Z R.func→ g (joinT Y R.func→ f)