Use 3rd formulation of univalence
This commit is contained in:
parent
4ff8f155ab
commit
770bce52a2
|
@ -162,25 +162,8 @@ module _ (ℓ : Level) where
|
|||
univ≃ : (hA ≅ hB) ≃ (hA ≡ hB)
|
||||
univ≃ = trivial? ⊙ step0 ⊙ step1 ⊙ step2
|
||||
|
||||
module _ (hA : Object) where
|
||||
open Σ hA renaming (fst to A)
|
||||
|
||||
eq1 : (Σ[ hB ∈ Object ] hA ≅ hB) ≡ (Σ[ hB ∈ Object ] hA ≡ hB)
|
||||
eq1 = ua (equivSig (\ hB → univ≃))
|
||||
|
||||
univalent[Contr] : isContr (Σ[ hB ∈ Object ] hA ≅ hB)
|
||||
univalent[Contr] = subst {P = isContr} (sym eq1) tres
|
||||
where
|
||||
module _ (y : Σ[ hB ∈ Object ] hA ≡ hB) where
|
||||
open Σ y renaming (fst to hB ; snd to hA≡hB)
|
||||
qres : (hA , refl) ≡ (hB , hA≡hB)
|
||||
qres = contrSingl hA≡hB
|
||||
|
||||
tres : isContr (Σ[ hB ∈ Object ] hA ≡ hB)
|
||||
tres = (hA , refl) , qres
|
||||
|
||||
univalent : Univalent
|
||||
univalent = from[Contr] univalent[Contr]
|
||||
univalent = from[Andrea] (λ _ _ → univ≃)
|
||||
|
||||
SetsIsCategory : IsCategory SetsRaw
|
||||
IsCategory.isPreCategory SetsIsCategory = isPreCat
|
||||
|
|
Loading…
Reference in a new issue