Move functor-equality to functor module

This commit is contained in:
Frederik Hanghøj Iversen 2018-01-25 12:11:50 +01:00
parent a480fca956
commit 7a77ba230c
2 changed files with 23 additions and 21 deletions

View file

@ -23,23 +23,6 @@ eqpair eqa eqb i = eqa i , eqb i
open Functor
open Category
module _ { ' : Level} {A B : Category '} where
lift-eq-functors : {f g : Functor A B}
(eq* : f .func* g .func*)
(eq→ : PathP (λ i {x y} A .Arrow x y B .Arrow (eq* i x) (eq* i y))
(f .func→) (g .func→))
-- → (eq→ : Functor.func→ f ≡ {!!}) -- Functor.func→ g)
-- Use PathP
-- directly to show heterogeneous equalities by using previous
-- equalities (i.e. continuous paths) to create new continuous paths.
(eqI : PathP (λ i {c : A .Object} eq→ i (A .𝟙 {c}) B .𝟙 {eq* i c})
(ident f) (ident g))
(eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
eq→ i (A ._⊕_ a' a) B ._⊕_ (eq→ i a') (eq→ i a))
(distrib f) (distrib g))
f g
lift-eq-functors eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i }
-- The category of categories
module _ ( ' : Level) where
private
@ -59,10 +42,9 @@ module _ ( ' : Level) where
postulate eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
eq→ i (A ._⊕_ a' a) D ._⊕_ (eq→ i a') (eq→ i a))
(distrib (h ∘f (g ∘f f))) (distrib ((h ∘f g) ∘f f))
-- eqD = {!!}
assc : h ∘f (g ∘f f) (h ∘f g) ∘f f
assc = lift-eq-functors eq* eq→ eqI eqD
assc = Functor≡ eq* eq→ eqI eqD
module _ {A B : Category '} {f : Functor A B} where
lem : (func* f) (func* (identity {C = A})) func* f

View file

@ -19,9 +19,29 @@ record Functor {c c' d d'} (C : Category c c') (D : Category
distrib : { c c' c'' : C .Object} {a : C .Arrow c c'} {a' : C .Arrow c' c''}
func→ (C ._⊕_ a' a) D ._⊕_ (func→ a') (func→ a)
module _ { ' : Level} {A B C : Category '} (F : Functor B C) (G : Functor A B) where
open Functor
open Category
module _ { ' : Level} { 𝔻 : Category '} where
private
_⊕_ = ._⊕_
Functor≡ : {F G : Functor 𝔻}
(eq* : F .func* G .func*)
(eq→ : PathP (λ i {x y} .Arrow x y 𝔻 .Arrow (eq* i x) (eq* i y))
(F .func→) (G .func→))
-- → (eq→ : Functor.func→ f ≡ {!!}) -- Functor.func→ g)
-- Use PathP
-- directly to show heterogeneous equalities by using previous
-- equalities (i.e. continuous paths) to create new continuous paths.
(eqI : PathP (λ i {A : .Object} eq→ i ( .𝟙 {A}) 𝔻 .𝟙 {eq* i A})
(ident F) (ident G))
(eqD : PathP (λ i {A B C : .Object} {f : .Arrow A B} {g : .Arrow B C}
eq→ i ( ._⊕_ g f) 𝔻 ._⊕_ (eq→ i g) (eq→ i f))
(distrib F) (distrib G))
F G
Functor≡ eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i }
module _ { ' : Level} {A B C : Category '} (F : Functor B C) (G : Functor A B) where
private
F* = F .func*
F→ = F .func→