Move modules around again.
Henceforth all modules shall be placed under the top-level module-name `Cat` (at least until I've come up with a better name) Also fixes an issue caused by https://github.com/Saizan/cubical-demo/ redefining Sigma.
This commit is contained in:
parent
e3d2c0d39e
commit
7d6db415a1
|
@ -1,11 +1,14 @@
|
||||||
{-# OPTIONS --cubical #-}
|
{-# OPTIONS --cubical #-}
|
||||||
module Category.Rel where
|
module Cat.Categories.Rel where
|
||||||
|
|
||||||
open import Data.Product
|
|
||||||
open import Cubical.PathPrelude
|
open import Cubical.PathPrelude
|
||||||
open import Cubical.GradLemma
|
open import Cubical.GradLemma
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Category
|
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||||||
|
open import Function
|
||||||
|
import Cubical.FromStdLib
|
||||||
|
|
||||||
|
open import Cat.Category
|
||||||
|
|
||||||
-- Subsets are predicates over some type.
|
-- Subsets are predicates over some type.
|
||||||
Subset : {ℓ : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc lzero)
|
Subset : {ℓ : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc lzero)
|
||||||
|
@ -72,7 +75,7 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where
|
||||||
|
|
||||||
equi : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
equi : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||||
≃ (a , b) ∈ S
|
≃ (a , b) ∈ S
|
||||||
equi = backwards , isequiv
|
equi = backwards Cubical.FromStdLib., isequiv
|
||||||
|
|
||||||
ident-l : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
ident-l : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||||
≡ (a , b) ∈ S
|
≡ (a , b) ∈ S
|
||||||
|
@ -106,7 +109,7 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where
|
||||||
|
|
||||||
equi : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
equi : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||||||
≃ ab ∈ S
|
≃ ab ∈ S
|
||||||
equi = backwards , isequiv
|
equi = backwards Cubical.FromStdLib., isequiv
|
||||||
|
|
||||||
ident-r : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
ident-r : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||||||
≡ ab ∈ S
|
≡ ab ∈ S
|
||||||
|
@ -144,7 +147,7 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset
|
||||||
|
|
||||||
equi : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
equi : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||||||
≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||||||
equi = fwd , isequiv
|
equi = fwd Cubical.FromStdLib., isequiv
|
||||||
|
|
||||||
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
||||||
is-assoc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
is-assoc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
|
@ -1,6 +1,6 @@
|
||||||
{-# OPTIONS --cubical #-}
|
{-# OPTIONS --cubical #-}
|
||||||
|
|
||||||
module Category where
|
module Cat.Category where
|
||||||
|
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Data.Unit.Base
|
open import Data.Unit.Base
|
|
@ -1,13 +1,14 @@
|
||||||
module Category.Cubical where
|
module Cat.Cubical where
|
||||||
|
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Category
|
|
||||||
open import Data.Bool
|
open import Data.Bool
|
||||||
open import Data.Product
|
open import Data.Product
|
||||||
open import Data.Sum
|
open import Data.Sum
|
||||||
open import Data.Unit
|
open import Data.Unit
|
||||||
open import Data.Empty
|
open import Data.Empty
|
||||||
|
|
||||||
|
open import Cat.Category
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} (Ns : Set ℓ) where
|
module _ {ℓ ℓ' : Level} (Ns : Set ℓ) where
|
||||||
-- Σ is the "namespace"
|
-- Σ is the "namespace"
|
||||||
ℓo = (lsuc lzero ⊔ ℓ)
|
ℓo = (lsuc lzero ⊔ ℓ)
|
Loading…
Reference in a new issue