More stuff about opposite being an involution
This commit is contained in:
parent
b26ea18257
commit
7f4a8a65b8
|
@ -301,23 +301,42 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
-- flipped.
|
||||
module Opposite {ℓa ℓb : Level} where
|
||||
module _ (ℂ : Category ℓa ℓb) where
|
||||
open Category ℂ
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
opRaw : RawCategory ℓa ℓb
|
||||
RawCategory.Object opRaw = Object
|
||||
RawCategory.Arrow opRaw = Function.flip Arrow
|
||||
RawCategory.𝟙 opRaw = 𝟙
|
||||
RawCategory._∘_ opRaw = Function.flip _∘_
|
||||
RawCategory.Object opRaw = ℂ.Object
|
||||
RawCategory.Arrow opRaw = Function.flip ℂ.Arrow
|
||||
RawCategory.𝟙 opRaw = ℂ.𝟙
|
||||
RawCategory._∘_ opRaw = Function.flip ℂ._∘_
|
||||
|
||||
opIsCategory : IsCategory opRaw
|
||||
IsCategory.isAssociative opIsCategory = sym isAssociative
|
||||
IsCategory.isIdentity opIsCategory = swap isIdentity
|
||||
IsCategory.arrowsAreSets opIsCategory = arrowsAreSets
|
||||
IsCategory.univalent opIsCategory = {!!}
|
||||
open RawCategory opRaw
|
||||
open Univalence opRaw
|
||||
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity = swap ℂ.isIdentity
|
||||
|
||||
module _ {A B : ℂ.Object} where
|
||||
univalent : isEquiv (A ≡ B) (A ≅ B)
|
||||
(id-to-iso (swap ℂ.isIdentity) A B)
|
||||
fst (univalent iso) = flipFiber (fst (ℂ.univalent (flipIso iso)))
|
||||
where
|
||||
flipIso : A ≅ B → B ℂ.≅ A
|
||||
flipIso (f , f~ , iso) = f , f~ , swap iso
|
||||
flipFiber
|
||||
: fiber (ℂ.id-to-iso ℂ.isIdentity B A) (flipIso iso)
|
||||
→ fiber ( id-to-iso isIdentity A B) iso
|
||||
flipFiber (eq , eqIso) = sym eq , {!!}
|
||||
snd (univalent iso) = {!!}
|
||||
|
||||
isCategory : IsCategory opRaw
|
||||
IsCategory.isAssociative isCategory = sym ℂ.isAssociative
|
||||
IsCategory.isIdentity isCategory = isIdentity
|
||||
IsCategory.arrowsAreSets isCategory = ℂ.arrowsAreSets
|
||||
IsCategory.univalent isCategory = univalent
|
||||
|
||||
opposite : Category ℓa ℓb
|
||||
raw opposite = opRaw
|
||||
Category.isCategory opposite = opIsCategory
|
||||
Category.raw opposite = opRaw
|
||||
Category.isCategory opposite = isCategory
|
||||
|
||||
-- As demonstrated here a side-effect of having no-eta-equality on constructors
|
||||
-- means that we need to pick things apart to show that things are indeed
|
||||
|
|
Loading…
Reference in a new issue