diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index e2c79dc..58bcc5e 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -337,6 +337,8 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where private q* : Arrow b b' q* = fst (idToIso b b' q) + p* : Arrow a a' + p* = fst (idToIso _ _ p) p~ : Arrow a' a p~ = fst (snd (idToIso _ _ p)) pq : Arrow a b ≡ Arrow a' b' @@ -365,6 +367,17 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where 9-1-9 : coe pq f ≡ q* <<< f <<< p~ 9-1-9 = pathJ D d a' p + 9-1-9' : coe pq f <<< p* ≡ q* <<< f + 9-1-9' = begin + coe pq f <<< p* ≡⟨ cong (_<<< p*) 9-1-9 ⟩ + q* <<< f <<< p~ <<< p* ≡⟨ sym isAssociative ⟩ + q* <<< f <<< (p~ <<< p*) ≡⟨ cong (λ φ → q* <<< f <<< φ) lem ⟩ + q* <<< f <<< identity ≡⟨ rightIdentity ⟩ + q* <<< f ∎ + where + lem : p~ <<< p* ≡ identity + lem = fst (snd (snd (idToIso _ _ p))) + -- | All projections are propositions. module Propositionality where -- | Terminal objects are propositional - a.k.a uniqueness of terminal diff --git a/src/Cat/Category/Product.agda b/src/Cat/Category/Product.agda index b8f39fb..d480ae5 100644 --- a/src/Cat/Category/Product.agda +++ b/src/Cat/Category/Product.agda @@ -250,11 +250,10 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} ≈ ((X , xa , xb) ≅ (Y , ya , yb)) step2 = ( λ{ ((f , f~ , inv-f) , p , q) - → ( f , (let r = fromPathP p in {!r!}) , {!!}) - , ( (f~ , {!!} , {!!}) - , lemA (fst inv-f) - , lemA (snd inv-f) - ) + → ( f , {!ℂ.9-1-9'!} , {!!}) + , ( f~ , {!!} , {!!}) + , lemA (fst inv-f) + , lemA (snd inv-f) } ) , (λ{ (f , f~ , inv-f , inv-f~) →