Change what is needed
This commit is contained in:
parent
f66d180ec3
commit
84f88ac2ae
|
@ -137,8 +137,11 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
-- It may be that we need something weaker than this, in that there
|
-- It may be that we need something weaker than this, in that there
|
||||||
-- may be some other lemmas available to us.
|
-- may be some other lemmas available to us.
|
||||||
-- For instance, `need0` should be available to us when we prove `need1`.
|
-- For instance, `need0` should be available to us when we prove `need1`.
|
||||||
need0 : ∀ Y → A ≡ Y
|
need0 : (s : Σ Object (A ≅_)) → (open Σ s renaming (proj₁ to Y) using ()) → A ≡ Y
|
||||||
need1 : (f : Arrow A A) → identity ≡ f
|
need2 : (iso : A ≅ A)
|
||||||
|
→ (open Σ iso renaming (proj₁ to f ; proj₂ to iso-f))
|
||||||
|
→ (open Σ iso-f renaming (proj₁ to f~ ; proj₂ to areInv))
|
||||||
|
→ (identity , identity) ≡ (f , f~)
|
||||||
|
|
||||||
c : Σ Object (A ≅_)
|
c : Σ Object (A ≅_)
|
||||||
c = A , idIso A
|
c = A , idIso A
|
||||||
|
@ -146,7 +149,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
module _ (y : Σ Object (A ≅_)) where
|
module _ (y : Σ Object (A ≅_)) where
|
||||||
open Σ y renaming (proj₁ to Y ; proj₂ to isoY)
|
open Σ y renaming (proj₁ to Y ; proj₂ to isoY)
|
||||||
q : A ≡ Y
|
q : A ≡ Y
|
||||||
q = need0 Y
|
q = need0 y
|
||||||
|
|
||||||
-- Some error with primComp
|
-- Some error with primComp
|
||||||
isoAY : A ≅ Y
|
isoAY : A ≅ Y
|
||||||
|
@ -162,20 +165,23 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
where
|
where
|
||||||
open Σ A≅Y renaming (proj₁ to f ; proj₂ to iso-f)
|
open Σ A≅Y renaming (proj₁ to f ; proj₂ to iso-f)
|
||||||
open Σ iso-f renaming (proj₁ to f~ ; proj₂ to areInv)
|
open Σ iso-f renaming (proj₁ to f~ ; proj₂ to areInv)
|
||||||
|
aaa : (identity , identity) ≡ (f , f~)
|
||||||
|
aaa = need2 A≅Y
|
||||||
a0 : identity ≡ f
|
a0 : identity ≡ f
|
||||||
a0 = need1 f
|
a0 i = fst (aaa i)
|
||||||
a1 : identity ≡ f~
|
a1 : identity ≡ f~
|
||||||
a1 = need1 f~
|
a1 i = snd (aaa i)
|
||||||
-- we do have this!
|
-- we do have this!
|
||||||
|
-- I just need to rearrange the proofs a bit.
|
||||||
postulate
|
postulate
|
||||||
prop : ∀ {A B} (fg : Arrow A B × Arrow B A) → isProp (IsInverseOf (fst fg) (snd fg))
|
prop : ∀ {A B} (fg : Arrow A B × Arrow B A) → isProp (IsInverseOf (fst fg) (snd fg))
|
||||||
a2 : PathP (λ i → IsInverseOf (a0 i) (a1 i)) isIdentity areInv
|
a2 : PathP (λ i → IsInverseOf (a0 i) (a1 i)) isIdentity areInv
|
||||||
a2 = lemPropF prop λ i → a0 i , a1 i
|
a2 = lemPropF prop aaa
|
||||||
d* : D Y q
|
d* : D Y q
|
||||||
d* = pathJ D d Y q
|
d* = pathJ D d Y q
|
||||||
|
|
||||||
p : (A , idIso A) ≡ (Y , isoY)
|
p : (A , idIso A) ≡ (Y , isoY)
|
||||||
p i = need0 Y i , lem i
|
p i = q i , lem i
|
||||||
|
|
||||||
univ-lem : isContr (Σ Object (A ≅_))
|
univ-lem : isContr (Σ Object (A ≅_))
|
||||||
univ-lem = c , p
|
univ-lem = c , p
|
||||||
|
|
Loading…
Reference in a new issue