Rename functor composition - implement monads...
In their monoidal form.
This commit is contained in:
parent
cb8533b84a
commit
8527fe0df4
|
@ -124,8 +124,9 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
||||||
; isDistributive = dist
|
; isDistributive = dist
|
||||||
}
|
}
|
||||||
|
|
||||||
_∘f_ : Functor A C
|
F[_∘_] _∘f_ : Functor A C
|
||||||
raw _∘f_ = _∘fr_
|
raw F[_∘_] = _∘fr_
|
||||||
|
_∘f_ = F[_∘_]
|
||||||
|
|
||||||
-- The identity functor
|
-- The identity functor
|
||||||
identity : ∀ {ℓ ℓ'} → {C : Category ℓ ℓ'} → Functor C C
|
identity : ∀ {ℓ ℓ'} → {C : Category ℓ ℓ'} → Functor C C
|
||||||
|
|
|
@ -1,8 +1,71 @@
|
||||||
{-# OPTIONS --cubical #-}
|
{-# OPTIONS --cubical #-}
|
||||||
module Cat.Category.Monad where
|
module Cat.Category.Monad where
|
||||||
|
|
||||||
|
open import Agda.Primitive
|
||||||
|
|
||||||
|
open import Data.Product
|
||||||
|
|
||||||
open import Cubical
|
open import Cubical
|
||||||
|
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Category.Functor
|
open import Cat.Category.Functor as F
|
||||||
|
open import Cat.Category.NaturalTransformation
|
||||||
open import Cat.Categories.Fun
|
open import Cat.Categories.Fun
|
||||||
|
|
||||||
|
-- "A monad in the monoidal form" [vlad]
|
||||||
|
module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
|
private
|
||||||
|
ℓ = ℓa ⊔ ℓb
|
||||||
|
|
||||||
|
open Category ℂ hiding (IsAssociative)
|
||||||
|
open NaturalTransformation ℂ ℂ
|
||||||
|
record RawMonad : Set ℓ where
|
||||||
|
field
|
||||||
|
R : Functor ℂ ℂ
|
||||||
|
-- pure
|
||||||
|
ηNat : NaturalTransformation F.identity R
|
||||||
|
-- (>=>)
|
||||||
|
μNat : NaturalTransformation F[ R ∘ R ] R
|
||||||
|
|
||||||
|
module R = Functor R
|
||||||
|
module RR = Functor F[ R ∘ R ]
|
||||||
|
private
|
||||||
|
module _ {X : Object} where
|
||||||
|
-- module IdRX = Functor (F.identity {C = RX})
|
||||||
|
|
||||||
|
η : Transformation F.identity R
|
||||||
|
η = proj₁ ηNat
|
||||||
|
ηX : ℂ [ X , R.func* X ]
|
||||||
|
ηX = η X
|
||||||
|
RηX : ℂ [ R.func* X , R.func* (R.func* X) ] -- ℂ [ R.func* X , {!R.func* (R.func* X))!} ]
|
||||||
|
RηX = R.func→ ηX
|
||||||
|
ηRX = η (R.func* X)
|
||||||
|
IdRX : Arrow (R.func* X) (R.func* X)
|
||||||
|
IdRX = 𝟙 {R.func* X}
|
||||||
|
|
||||||
|
μ : Transformation F[ R ∘ R ] R
|
||||||
|
μ = proj₁ μNat
|
||||||
|
μX : ℂ [ RR.func* X , R.func* X ]
|
||||||
|
μX = μ X
|
||||||
|
RμX : ℂ [ R.func* (RR.func* X) , RR.func* X ]
|
||||||
|
RμX = R.func→ μX
|
||||||
|
μRX : ℂ [ RR.func* (R.func* X) , R.func* (R.func* X) ]
|
||||||
|
μRX = μ (R.func* X)
|
||||||
|
|
||||||
|
IsAssociative' : Set _
|
||||||
|
IsAssociative' = ℂ [ μX ∘ RμX ] ≡ ℂ [ μX ∘ μRX ]
|
||||||
|
IsInverse' : Set _
|
||||||
|
IsInverse'
|
||||||
|
= ℂ [ μX ∘ ηRX ] ≡ IdRX
|
||||||
|
× ℂ [ μX ∘ RηX ] ≡ IdRX
|
||||||
|
|
||||||
|
-- We don't want the objects to be indexes of the type, but rather just
|
||||||
|
-- universally quantify over *all* objects of the category.
|
||||||
|
IsAssociative = {X : Object} → IsAssociative' {X}
|
||||||
|
IsInverse = {X : Object} → IsInverse' {X}
|
||||||
|
|
||||||
|
record IsMonad (raw : RawMonad) : Set ℓ where
|
||||||
|
open RawMonad raw public
|
||||||
|
field
|
||||||
|
isAssociative : IsAssociative
|
||||||
|
isInverse : IsInverse
|
||||||
|
|
Loading…
Reference in a new issue