Trim mess

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-20 16:42:56 +01:00
parent 8ef61d9db0
commit 860c91f913

View file

@ -137,53 +137,27 @@ module _ {a b : Level} {C : RawCategory a b} { : IsCategory C} wh
propUnivalent a b i = propPi (λ iso propHasLevel ⟨-2⟩) a b i propUnivalent a b i = propPi (λ iso propHasLevel ⟨-2⟩) a b i
module _ {a} {b} { : RawCategory a b} where module _ {a} {b} { : RawCategory a b} where
-- TODO, provable by using arrow-is-set and that isProp (isEquiv _ _ _)
-- This lemma will be useful to prove the equality of two categories.
IsCategory-is-prop : isProp (IsCategory )
IsCategory-is-prop x y i = record
-- Why choose `x`'s `propIsAssociative`?
-- Well, probably it could be pulled out of the record.
{ assoc = x.propIsAssociative x.assoc y.assoc i
; ident = ident' i
; arrowIsSet = x.propArrowIsSet x.arrowIsSet y.arrowIsSet i
; univalent = eqUni i
}
where
module x = IsCategory x
module y = IsCategory y
ident' = x.propIsIdentity x.ident y.ident
ident'' = ident' i
xuni : x.Univalent
xuni = x.univalent
yuni : y.Univalent
yuni = y.univalent
open RawCategory open RawCategory
Pp : (x.ident y.ident) I Set (a b) private
Pp eqIdent i = {A B : Object} module _ (x y : IsCategory ) where
isEquiv (A B) (A B) module IC = IsCategory
(λ A≡B module X = IsCategory x
transp module Y = IsCategory y
(λ j ident = X.propIsIdentity X.ident Y.ident
Σ-syntax (Arrow A (A≡B j)) done : x y
(λ f Σ-syntax (Arrow (A≡B j) A) (λ g g f 𝟙 × f g 𝟙)))
( 𝟙
, 𝟙
, ident' i
)
)
T : I Set (a b) T : I Set (a b)
T = Pp {!ident'!} T i = {A B : Object}
open Cubical.NType.Properties isEquiv (A B) (A B)
test : (λ _ x.Univalent) [ xuni xuni ] (λ eq transp (λ i₁ A eq i₁) (𝟙 , 𝟙 , ident i))
test = refl eqUni : T [ X.univalent Y.univalent ]
t = {!!}
P : (uni : x.Univalent) xuni uni Set (a b)
P = {!!}
-- T i0 ≡ x.Univalent
-- T i1 ≡ y.Univalent
eqUni : T [ xuni yuni ]
eqUni = {!!} eqUni = {!!}
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
IC.ident (done i) = ident i
IC.arrowIsSet (done i) = X.propArrowIsSet X.arrowIsSet Y.arrowIsSet i
IC.univalent (done i) = eqUni i
propIsCategory : isProp (IsCategory )
propIsCategory = done
record Category (a b : Level) : Set (lsuc (a b)) where record Category (a b : Level) : Set (lsuc (a b)) where
field field