diff --git a/src/Cat/Categories/Rel.agda b/src/Cat/Categories/Rel.agda index 3aa4e59..f334c30 100644 --- a/src/Cat/Categories/Rel.agda +++ b/src/Cat/Categories/Rel.agda @@ -2,6 +2,7 @@ module Cat.Categories.Rel where open import Cat.Prelude hiding (Rel) +open import Cat.Equivalence open import Cat.Category @@ -61,15 +62,9 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where lem0 = (λ a'' a≡a'' → ∀ a''b∈S → (forwards ∘ backwards) (a'' , a≡a'' , a''b∈S) ≡ (a'' , a≡a'' , a''b∈S)) lem1 = (λ z₁ → cong (\ z → a , refl , z) (pathJprop (\ y _ → y) z₁)) - isequiv : isEquiv - (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S) - ((a , b) ∈ S) - backwards - isequiv y = gradLemma backwards forwards fwd-bwd bwd-fwd y - equi : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S) ≃ (a , b) ∈ S - equi = backwards , isequiv + equi = fromIsomorphism _ _ (backwards , forwards , funExt bwd-fwd , funExt fwd-bwd) ident-r : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S) ≡ (a , b) ∈ S @@ -95,15 +90,9 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where lem0 = (λ b'' b≡b'' → (ab''∈S : (a , b'') ∈ S) → (forwards ∘ backwards) (b'' , ab''∈S , sym b≡b'') ≡ (b'' , ab''∈S , sym b≡b'')) lem1 = (λ ab''∈S → cong (λ φ → b , φ , refl) (pathJprop (λ y _ → y) ab''∈S)) - isequiv : isEquiv - (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B) - ((a , b) ∈ S) - backwards - isequiv ab∈S = gradLemma backwards forwards bwd-fwd fwd-bwd ab∈S - equi : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B) ≃ ab ∈ S - equi = backwards , isequiv + equi = fromIsomorphism _ _ (backwards , (forwards , funExt fwd-bwd , funExt bwd-fwd)) ident-l : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B) ≡ ab ∈ S @@ -133,15 +122,9 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset bwd-fwd : (x : Q⊕⟨R⊕S⟩) → (bwd ∘ fwd) x ≡ x bwd-fwd x = refl - isequiv : isEquiv - (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q) - (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q)) - fwd - isequiv = gradLemma fwd bwd fwd-bwd bwd-fwd - equi : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q) ≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q)) - equi = fwd , isequiv + equi = fromIsomorphism _ _ (fwd , bwd , funExt bwd-fwd , funExt fwd-bwd) -- isAssociativec : Q + (R + S) ≡ (Q + R) + S is-isAssociative : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q) diff --git a/src/Cat/Category/Monad/Kleisli.agda b/src/Cat/Category/Monad/Kleisli.agda index 463d3ab..0fd6e3d 100644 --- a/src/Cat/Category/Monad/Kleisli.agda +++ b/src/Cat/Category/Monad/Kleisli.agda @@ -5,6 +5,7 @@ The Kleisli formulation of monads open import Agda.Primitive open import Cat.Prelude +open import Cat.Equivalence open import Cat.Category open import Cat.Category.Functor as F @@ -328,13 +329,15 @@ module _ where module M = Monad m e : Monad' ≃ Monad - e = toMonad , gradLemma toMonad fromMonad + e = fromIsomorphism _ _ (toMonad , fromMonad , (funExt λ _ → refl) , funExt eta-refl) + where -- Monads don't have eta-equality - (λ x → λ - { i .Monad.raw → Monad.raw x - ; i .Monad.isMonad → Monad.isMonad x} - ) - λ _ → refl + eta-refl : (x : Monad) → toMonad (fromMonad x) ≡ x + eta-refl = + (λ x → λ + { i .Monad.raw → Monad.raw x + ; i .Monad.isMonad → Monad.isMonad x} + ) grpdMonad : isGrpd Monad grpdMonad = equivPreservesNType diff --git a/src/Cat/Category/Monad/Voevodsky.agda b/src/Cat/Category/Monad/Voevodsky.agda index 8d3b75f..7bedab1 100644 --- a/src/Cat/Category/Monad/Voevodsky.agda +++ b/src/Cat/Category/Monad/Voevodsky.agda @@ -1,11 +1,11 @@ {- This module provides construction 2.3 in [voe] -} -{-# OPTIONS --cubical --caching #-} +{-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Category.Monad.Voevodsky where - open import Cat.Prelude +open import Cat.Equivalence open import Cat.Category open import Cat.Category.Functor as F @@ -203,8 +203,8 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where K.Monad.raw (lemma m i) = K.Monad.raw m K.Monad.isMonad (lemma m i) = K.Monad.isMonad m - voe-isEquiv : isEquiv (§2-3.§1 omap pure) (§2-3.§2 omap pure) forth - voe-isEquiv = gradLemma forth back forthEq backEq - equiv-2-3 : §2-3.§1 omap pure ≃ §2-3.§2 omap pure - equiv-2-3 = forth , voe-isEquiv + equiv-2-3 = fromIsomorphism _ _ + ( forth , back + , funExt backEq , funExt forthEq + )