Drastically simplify proofs
This commit is contained in:
parent
3f3247c870
commit
885fd8fa69
|
@ -24,67 +24,15 @@ open Category using (Object ; 𝟙)
|
||||||
module _ (ℓ ℓ' : Level) where
|
module _ (ℓ ℓ' : Level) where
|
||||||
private
|
private
|
||||||
module _ {𝔸 𝔹 ℂ 𝔻 : Category ℓ ℓ'} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 ℂ} {H : Functor ℂ 𝔻} where
|
module _ {𝔸 𝔹 ℂ 𝔻 : Category ℓ ℓ'} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 ℂ} {H : Functor ℂ 𝔻} where
|
||||||
private
|
|
||||||
eq* : func* (H ∘f (G ∘f F)) ≡ func* ((H ∘f G) ∘f F)
|
|
||||||
eq* = refl
|
|
||||||
eq→ : PathP
|
|
||||||
(λ i → {A B : Object 𝔸} → 𝔸 [ A , B ] → 𝔻 [ eq* i A , eq* i B ])
|
|
||||||
(func→ (H ∘f (G ∘f F))) (func→ ((H ∘f G) ∘f F))
|
|
||||||
eq→ = refl
|
|
||||||
postulate
|
|
||||||
eqI
|
|
||||||
: (λ i → ∀ {A : Object 𝔸} → eq→ i (𝟙 𝔸 {A}) ≡ 𝟙 𝔻 {eq* i A})
|
|
||||||
[ (H ∘f (G ∘f F)) .isFunctor .ident
|
|
||||||
≡ ((H ∘f G) ∘f F) .isFunctor .ident
|
|
||||||
]
|
|
||||||
eqD
|
|
||||||
: (λ i → ∀ {A B C} {f : 𝔸 [ A , B ]} {g : 𝔸 [ B , C ]}
|
|
||||||
→ eq→ i (𝔸 [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ])
|
|
||||||
[ (H ∘f (G ∘f F)) .isFunctor .distrib
|
|
||||||
≡ ((H ∘f G) ∘f F) .isFunctor .distrib
|
|
||||||
]
|
|
||||||
|
|
||||||
assc : H ∘f (G ∘f F) ≡ (H ∘f G) ∘f F
|
assc : H ∘f (G ∘f F) ≡ (H ∘f G) ∘f F
|
||||||
assc = Functor≡ eq* eq→
|
assc = Functor≡ refl refl
|
||||||
|
|
||||||
module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where
|
module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where
|
||||||
module _ where
|
|
||||||
private
|
|
||||||
eq* : (func* F) ∘ (func* (identity {C = ℂ})) ≡ func* F
|
|
||||||
eq* = refl
|
|
||||||
-- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f
|
|
||||||
eq→ : PathP
|
|
||||||
(λ i →
|
|
||||||
{x y : Object ℂ} → ℂ [ x , y ] → 𝔻 [ func* F x , func* F y ])
|
|
||||||
(func→ (F ∘f identity)) (func→ F)
|
|
||||||
eq→ = refl
|
|
||||||
postulate
|
|
||||||
eqI-r
|
|
||||||
: (λ i → {c : Object ℂ} → (λ _ → 𝔻 [ func* F c , func* F c ])
|
|
||||||
[ func→ F (𝟙 ℂ) ≡ 𝟙 𝔻 ])
|
|
||||||
[(F ∘f identity) .isFunctor .ident ≡ F .isFunctor .ident ]
|
|
||||||
eqD-r : PathP
|
|
||||||
(λ i →
|
|
||||||
{A B C : Object ℂ} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]} →
|
|
||||||
eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ])
|
|
||||||
((F ∘f identity) .isFunctor .distrib) (F .isFunctor .distrib)
|
|
||||||
ident-r : F ∘f identity ≡ F
|
ident-r : F ∘f identity ≡ F
|
||||||
ident-r = Functor≡ eq* eq→
|
ident-r = Functor≡ refl refl
|
||||||
module _ where
|
|
||||||
private
|
|
||||||
postulate
|
|
||||||
eq* : func* (identity ∘f F) ≡ func* F
|
|
||||||
eq→ : PathP
|
|
||||||
(λ i → {x y : Object ℂ} → ℂ [ x , y ] → 𝔻 [ eq* i x , eq* i y ])
|
|
||||||
(func→ (identity ∘f F)) (func→ F)
|
|
||||||
eqI : (λ i → ∀ {A : Object ℂ} → eq→ i (𝟙 ℂ {A}) ≡ 𝟙 𝔻 {eq* i A})
|
|
||||||
[ ((identity ∘f F) .isFunctor .ident) ≡ (F .isFunctor .ident) ]
|
|
||||||
eqD : PathP (λ i → {A B C : Object ℂ} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
|
||||||
→ eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ])
|
|
||||||
((identity ∘f F) .isFunctor .distrib) (F .isFunctor .distrib)
|
|
||||||
-- (λ z → eq* i z) (eq→ i)
|
|
||||||
ident-l : identity ∘f F ≡ F
|
ident-l : identity ∘f F ≡ F
|
||||||
ident-l = Functor≡ eq* eq→
|
ident-l = Functor≡ refl refl
|
||||||
|
|
||||||
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||||
RawCat =
|
RawCat =
|
||||||
|
@ -93,18 +41,13 @@ module _ (ℓ ℓ' : Level) where
|
||||||
; Arrow = Functor
|
; Arrow = Functor
|
||||||
; 𝟙 = identity
|
; 𝟙 = identity
|
||||||
; _∘_ = _∘f_
|
; _∘_ = _∘f_
|
||||||
-- What gives here? Why can I not name the variables directly?
|
|
||||||
-- ; isCategory = record
|
|
||||||
-- { assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H}
|
|
||||||
-- ; ident = ident-r , ident-l
|
|
||||||
-- }
|
|
||||||
}
|
}
|
||||||
private
|
private
|
||||||
open RawCategory
|
open RawCategory RawCat
|
||||||
assoc : IsAssociative RawCat
|
assoc : IsAssociative
|
||||||
assoc {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
assoc {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||||
-- TODO: Rename `ident'` to `ident` after changing how names are exposed in Functor.
|
-- TODO: Rename `ident'` to `ident` after changing how names are exposed in Functor.
|
||||||
ident' : IsIdentity RawCat identity
|
ident' : IsIdentity identity
|
||||||
ident' = ident-r , ident-l
|
ident' = ident-r , ident-l
|
||||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||||
-- however, form a groupoid! Therefore there is no (1-)category of
|
-- however, form a groupoid! Therefore there is no (1-)category of
|
||||||
|
|
Loading…
Reference in a new issue