Simplify qualified imports, change make-target: clean

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-21 12:28:26 +01:00
parent e98ed89db5
commit 890154a81d
2 changed files with 10 additions and 8 deletions

View file

@ -2,4 +2,4 @@ build: src/**.agda
agda src/Cat.agda
clean:
rm src/**/*.agdai
find src -name "*.agdai" -type f -delete

View file

@ -16,9 +16,11 @@ open import Cat.Category
open import Cat.Category.Functor
open import Cat.Category.Product
open import Cat.Wishlist
open import Cat.Equivalence as Eqv renaming (module NoEta to Eeq) using (AreInverses ; module Equiv)
open import Cat.Equivalence as Eqv using (AreInverses ; module Equiv ; module NoEta)
module Equivalence = Eeq.Equivalence
open NoEta
module Equivalence = Equivalence
_⊙_ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} (A B) (B C) A C
eqA eqB = Equivalence.compose eqA eqB
@ -122,7 +124,7 @@ module _ ( : Level) where
module _ {a b : Level} {A : Set a} {P : A Set b} where
lem2 : ((x : A) isProp (P x)) (p q : Σ A P)
(p q) (proj₁ p proj₁ q)
lem2 pA p q = Eeq.fromIsomorphism iso
lem2 pA p q = fromIsomorphism iso
where
f : p q proj₁ p proj₁ q
f e i = proj₁ (e i)
@ -186,7 +188,7 @@ module _ ( : Level) where
iso : Σ A P Eqv.≅ Σ A Q
iso = f , g , inv
res : Σ A P Σ A Q
res = Eeq.fromIsomorphism iso
res = fromIsomorphism iso
module _ {a b : Level} {A : Set a} {B : Set b} where
lem4 : isSet A isSet B (f : A B)
@ -207,7 +209,7 @@ module _ ( : Level) where
{ verso-recto = funExt re-ve
; recto-verso = funExt ve-re
}
in Eeq.fromIsomorphism iso
in fromIsomorphism iso
module _ {hA hB : Object} where
private
@ -240,7 +242,7 @@ module _ ( : Level) where
eqv : Σ (A B) (isEquiv A B) Eqv.≅ (A B)
eqv = obv , inv , areInv
hh : Σ (A B) (isEquiv A B) (A B)
hh = Eeq.fromIsomorphism eqv
hh = fromIsomorphism eqv
-- lem2 with propIsSet
step2 : (A B) (hA hB)
@ -248,7 +250,7 @@ module _ ( : Level) where
-- Go from an isomorphism on sets to an isomorphism on homotopic sets
trivial? : (hA hB) Σ (A B) isIso
trivial? = sym≃ (Eeq.fromIsomorphism res)
trivial? = sym≃ (fromIsomorphism res)
where
fwd : Σ (A B) isIso hA hB
fwd (f , g , inv) = f , g , inv.toPair