Stuff about univalence for the category of functors

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-13 10:24:50 +01:00
parent fe453a6d3a
commit 896e0d3d37

View file

@ -6,6 +6,7 @@ open import Data.Product
open import Cubical open import Cubical
open import Cubical.GradLemma
open import Cubical.NType.Properties open import Cubical.NType.Properties
open import Cat.Category open import Cat.Category
@ -13,10 +14,10 @@ open import Cat.Category.Functor hiding (identity)
open import Cat.Category.NaturalTransformation open import Cat.Category.NaturalTransformation
module Fun {c c' d d' : Level} ( : Category c c') (𝔻 : Category d d') where module Fun {c c' d d' : Level} ( : Category c c') (𝔻 : Category d d') where
open Category using (Object ; 𝟙)
module NT = NaturalTransformation 𝔻 module NT = NaturalTransformation 𝔻
open NT public open NT public
private private
module = Category
module 𝔻 = Category 𝔻 module 𝔻 = Category 𝔻
private private
module _ {A B C D : Functor 𝔻} {θ' : NaturalTransformation A B} module _ {A B C D : Functor 𝔻} {θ' : NaturalTransformation A B}
@ -65,13 +66,98 @@ module Fun {c c' d d' : Level} ( : Category c c') (𝔻 : C
; _∘_ = λ {F G H} NT[_∘_] {F} {G} {H} ; _∘_ = λ {F G H} NT[_∘_] {F} {G} {H}
} }
open RawCategory RawFun
open Univalence RawFun
module _ {A B : Functor 𝔻} where
module A = Functor A
module B = Functor B
module _ (p : A B) where
omapP : A.omap B.omap
omapP i = Functor.omap (p i)
coerceAB : {X} 𝔻 [ A.omap X , A.omap X ] 𝔻 [ A.omap X , B.omap X ]
coerceAB {X} = cong (λ φ 𝔻 [ A.omap X , φ X ]) omapP
-- The transformation will be the identity on 𝔻. Such an arrow has the
-- type `A.omap A → A.omap A`. Which we can coerce to have the type
-- `A.omap → B.omap` since `A` and `B` are equal.
coe𝟙 : Transformation A B
coe𝟙 X = coe coerceAB 𝔻.𝟙
module _ {a b : .Object} (f : [ a , b ]) where
nat' : 𝔻 [ coe𝟙 b A.fmap f ] 𝔻 [ B.fmap f coe𝟙 a ]
nat' = begin
(𝔻 [ coe𝟙 b A.fmap f ]) ≡⟨ {!!}
(𝔻 [ B.fmap f coe𝟙 a ])
transs : (i : I) Transformation A (p i)
transs = {!!}
natt : (i : I) Natural A (p i) {!!}
natt = {!!}
t : Natural A B coe𝟙
t = coe c (identityNatural A)
where
c : Natural A A (identityTrans A) Natural A B coe𝟙
c = begin
Natural A A (identityTrans A) ≡⟨ (λ x {!natt ?!})
Natural A B coe𝟙
-- cong (λ φ → {!Natural A A (identityTrans A)!}) {!!}
k : Natural A A (identityTrans A) Natural A B coe𝟙
k n {a} {b} f = res
where
res : (𝔻 [ coe𝟙 b A.fmap f ]) (𝔻 [ B.fmap f coe𝟙 a ])
res = {!!}
nat : Natural A B coe𝟙
nat = nat'
fromEq : NaturalTransformation A B
fromEq = coe𝟙 , nat
module _ {A B : Functor 𝔻} where
obverse : A B A B
obverse p = res
where
ob : Arrow A B
ob = fromEq p
re : Arrow B A
re = fromEq (sym p)
vr : _∘_ {A = A} {B} {A} re ob 𝟙 {A}
vr = {!!}
rv : _∘_ {A = B} {A} {B} ob re 𝟙 {B}
rv = {!!}
isInverse : IsInverseOf {A} {B} ob re
isInverse = vr , rv
iso : Isomorphism {A} {B} ob
iso = re , isInverse
res : A B
res = ob , iso
reverse : A B A B
reverse iso = {!!}
ve-re : (y : A B) obverse (reverse y) y
ve-re = {!!}
re-ve : (x : A B) reverse (obverse x) x
re-ve = {!!}
done : isEquiv (A B) (A B) (id-to-iso (λ { {A} {B} isIdentity {A} {B}}) A B)
done = {!gradLemma obverse reverse ve-re re-ve!}
univalent : Univalent (λ{ {A} {B} isIdentity {A} {B}})
univalent = done
instance instance
isCategory : IsCategory RawFun isCategory : IsCategory RawFun
isCategory = record isCategory = record
{ isAssociative = λ {A B C D} isAssociative {A} {B} {C} {D} { isAssociative = λ {A B C D} isAssociative {A} {B} {C} {D}
; isIdentity = λ {A B} isIdentity {A} {B} ; isIdentity = λ {A B} isIdentity {A} {B}
; arrowsAreSets = λ {F} {G} naturalTransformationIsSet {F} {G} ; arrowsAreSets = λ {F} {G} naturalTransformationIsSet {F} {G}
; univalent = {!!} ; univalent = univalent
} }
Fun : Category (c c' d d') (c c' d') Fun : Category (c c' d d') (c c' d')