Use smaller symbols for arrows in presentation

This commit is contained in:
Frederik Hanghøj Iversen 2018-10-29 12:39:12 +01:00
parent c5020a0d87
commit 8f15001a93
2 changed files with 46 additions and 27 deletions

View file

@ -128,3 +128,20 @@
\newcommand\Monoidal{\varindex{Monoidal}}
\newcommand\Kleisli{\varindex{Kleisli}}
\newcommand\I{\mathds{I}}
\makeatletter
\DeclareRobustCommand\bigop[1]{%
\mathop{\vphantom{\sum}\mathpalette\bigop@{#1}}\slimits@
}
\newcommand{\bigop@}[2]{%
\vcenter{%
\sbox\z@{$#1\sum$}%
\hbox{\resizebox{\ifx#1\displaystyle.7\fi\dimexpr\ht\z@+\dp\z@}{!}{$\m@th#2$}}%
}%
}
\makeatother
\renewcommand{\llll}{\mathbin{\bigop{\lll}}}
\renewcommand{\rrrr}{\mathbin{\bigop{\rrr}}}
%% \newcommand{\llll}{lll}
%% \newcommand{\rrrr}{rrr}

View file

@ -1,4 +1,5 @@
\documentclass[a4paper]{beamer}
%% \documentclass[a4paper,handout]{beamer}
%% \usecolortheme[named=seagull]{structure}
\input{packages.tex}
@ -82,20 +83,21 @@ The category of spans
\Object & \tp \Type \\
\Arrow & \tp \Object\Object\Type \\
\identity & \tp \Arrow\ A\ A \\
\lll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
\llll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
\end{align*}
%
\pause
Laws:
%
$$
h \lll (g \lll f) ≡ (h \lll g) \lll f
$$
$$
(\identity \lll f ≡ f)
\begin{align*}
\var{isAssociative} & \tp
h \llll (g \llll f) ≡ (h \llll g) \llll f \\
\var{isIdentity} & \tp
(\identity \llll f ≡ f)
×
(f \lll \identity ≡ f)
$$
(f \llll \identity ≡ f)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Pre categories}
@ -208,7 +210,7 @@ The category of spans
\label{eq:coeDom}
\tag{$\var{coeDom}$}
_{f \tp A → X}
\var{coe}\ p_{\var{dom}}\ f ≡ f \lll \inv{\iota}
\var{coe}\ p_{\var{dom}}\ f ≡ f \llll \inv{\iota}
\end{align}
\end{frame}
\begin{frame}
@ -216,8 +218,8 @@ The category of spans
\framesubtitle{A theorem, proof}
\begin{align*}
\var{coe}\ p_{\var{dom}}\ f
& ≡ f \lll (\idToIso\ p)_1 && \text{By path-induction} \\
& ≡ f \lll \inv{\iota}
& ≡ f \llll (\idToIso\ p)_1 && \text{By path-induction} \\
& ≡ f \llll \inv{\iota}
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
\end{align*}
\pause
@ -233,14 +235,14 @@ The category of spans
D\ \widetilde{B}\ \widetilde{p}
\var{coe}\ \widetilde{p}_{\var{dom}}\ f
f \lll \inv{(\idToIso\ \widetilde{p})}
f \llll \inv{(\idToIso\ \widetilde{p})}
$$
\pause
%
The base-case becomes:
$$
d \tp D\ A\ \refl =
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}\right)
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}\right)
$$
\end{frame}
\begin{frame}
@ -248,7 +250,7 @@ The category of spans
\framesubtitle{A theorem, proof, cont'd}
$$
d \tp
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}
$$
\pause
\begin{align*}
@ -257,10 +259,10 @@ The category of spans
\var{coe}\ \refl\ f \\
& ≡ f
&& \text{neutral element for $\var{coe}$}\\
& ≡ f \lll \identity \\
& ≡ f \lll \var{subst}\ \refl\ \identity
& ≡ f \llll \identity \\
& ≡ f \llll \var{subst}\ \refl\ \identity
&& \text{neutral element for $\var{subst}$}\\
& ≡ f \lll \inv{(\idToIso\ \refl)}
& ≡ f \llll \inv{(\idToIso\ \refl)}
&& \text{By definition of $\idToIso$}\\
\end{align*}
\pause
@ -286,8 +288,8 @@ The category of spans
%
$$
_{f \tp \Arrow\ A\ B}
(b_{\pairA} \lll f ≡ a_{\pairA}) ×
(b_{\pairB} \lll f ≡ a_{\pairB})
(b_{\pairA} \llll f ≡ a_{\pairA}) ×
(b_{\pairB} \llll f ≡ a_{\pairB})
$$
\end{frame}
\begin{frame}
@ -387,7 +389,7 @@ The category of spans
%
\begin{align*}
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜}
& ≡ x_{𝒜} \lll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
& ≡ x_{𝒜} \llll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
& ≡ y_{𝒜} && \text{Property of span category}
\end{align*}
\end{frame}
@ -426,10 +428,10 @@ The category of spans
Let $\fmap$ be the map on arrows of $\EndoR$.
%
\begin{align*}
\join \lll \fmap\ \join
&\join \lll \join \\
\join \lll \pure\ &\identity \\
\join \lll \fmap\ \pure &\identity
\join \llll \fmap\ \join
&\join \llll \join \\
\join \llll \pure\ &\identity \\
\join \llll \fmap\ \pure &\identity
\end{align*}
\end{frame}
\begin{frame}
@ -453,14 +455,14 @@ The category of spans
\Arrow\ B\ (\omapR\ C)
\Arrow\ A\ (\omapR\ C) \\
f \fish g & ≜ f \rrr (\bind\ g)
f \fish g & ≜ f \rrrr (\bind\ g)
\end{align*}
\pause
%
\begin{align*}
\bind\ \pure &\identity_{\omapR\ X} \\
\pure \fish f & ≡ f \\
(\bind\ f) \rrr (\bind\ g) &\bind\ (f \fish g)
(\bind\ f) \rrrr (\bind\ g) &\bind\ (f \fish g)
\end{align*}
\end{frame}
\begin{frame}
@ -469,7 +471,7 @@ The category of spans
In the monoidal formulation we can define $\bind$:
%
$$
\bind\ f ≜ \join \lll \fmap\ f
\bind\ f ≜ \join \llll \fmap\ f
$$
\pause
%