Use smaller symbols for arrows in presentation
This commit is contained in:
parent
c5020a0d87
commit
8f15001a93
|
@ -128,3 +128,20 @@
|
||||||
\newcommand\Monoidal{\varindex{Monoidal}}
|
\newcommand\Monoidal{\varindex{Monoidal}}
|
||||||
\newcommand\Kleisli{\varindex{Kleisli}}
|
\newcommand\Kleisli{\varindex{Kleisli}}
|
||||||
\newcommand\I{\mathds{I}}
|
\newcommand\I{\mathds{I}}
|
||||||
|
|
||||||
|
\makeatletter
|
||||||
|
\DeclareRobustCommand\bigop[1]{%
|
||||||
|
\mathop{\vphantom{\sum}\mathpalette\bigop@{#1}}\slimits@
|
||||||
|
}
|
||||||
|
\newcommand{\bigop@}[2]{%
|
||||||
|
\vcenter{%
|
||||||
|
\sbox\z@{$#1\sum$}%
|
||||||
|
\hbox{\resizebox{\ifx#1\displaystyle.7\fi\dimexpr\ht\z@+\dp\z@}{!}{$\m@th#2$}}%
|
||||||
|
}%
|
||||||
|
}
|
||||||
|
\makeatother
|
||||||
|
|
||||||
|
\renewcommand{\llll}{\mathbin{\bigop{\lll}}}
|
||||||
|
\renewcommand{\rrrr}{\mathbin{\bigop{\rrr}}}
|
||||||
|
%% \newcommand{\llll}{lll}
|
||||||
|
%% \newcommand{\rrrr}{rrr}
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
\documentclass[a4paper]{beamer}
|
\documentclass[a4paper]{beamer}
|
||||||
|
%% \documentclass[a4paper,handout]{beamer}
|
||||||
%% \usecolortheme[named=seagull]{structure}
|
%% \usecolortheme[named=seagull]{structure}
|
||||||
|
|
||||||
\input{packages.tex}
|
\input{packages.tex}
|
||||||
|
@ -82,20 +83,21 @@ The category of spans
|
||||||
\Object & \tp \Type \\
|
\Object & \tp \Type \\
|
||||||
\Arrow & \tp \Object → \Object → \Type \\
|
\Arrow & \tp \Object → \Object → \Type \\
|
||||||
\identity & \tp \Arrow\ A\ A \\
|
\identity & \tp \Arrow\ A\ A \\
|
||||||
\lll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
|
\llll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
\pause
|
\pause
|
||||||
Laws:
|
Laws:
|
||||||
%
|
%
|
||||||
$$
|
\begin{align*}
|
||||||
h \lll (g \lll f) ≡ (h \lll g) \lll f
|
\var{isAssociative} & \tp
|
||||||
$$
|
h \llll (g \llll f) ≡ (h \llll g) \llll f \\
|
||||||
$$
|
\var{isIdentity} & \tp
|
||||||
(\identity \lll f ≡ f)
|
(\identity \llll f ≡ f)
|
||||||
×
|
×
|
||||||
(f \lll \identity ≡ f)
|
(f \llll \identity ≡ f)
|
||||||
$$
|
\end{align*}
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Pre categories}
|
\frametitle{Pre categories}
|
||||||
|
@ -208,7 +210,7 @@ The category of spans
|
||||||
\label{eq:coeDom}
|
\label{eq:coeDom}
|
||||||
\tag{$\var{coeDom}$}
|
\tag{$\var{coeDom}$}
|
||||||
∏_{f \tp A → X}
|
∏_{f \tp A → X}
|
||||||
\var{coe}\ p_{\var{dom}}\ f ≡ f \lll \inv{\iota}
|
\var{coe}\ p_{\var{dom}}\ f ≡ f \llll \inv{\iota}
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
@ -216,8 +218,8 @@ The category of spans
|
||||||
\framesubtitle{A theorem, proof}
|
\framesubtitle{A theorem, proof}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{coe}\ p_{\var{dom}}\ f
|
\var{coe}\ p_{\var{dom}}\ f
|
||||||
& ≡ f \lll (\idToIso\ p)_1 && \text{By path-induction} \\
|
& ≡ f \llll (\idToIso\ p)_1 && \text{By path-induction} \\
|
||||||
& ≡ f \lll \inv{\iota}
|
& ≡ f \llll \inv{\iota}
|
||||||
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
|
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\pause
|
\pause
|
||||||
|
@ -233,14 +235,14 @@ The category of spans
|
||||||
D\ \widetilde{B}\ \widetilde{p} ≜
|
D\ \widetilde{B}\ \widetilde{p} ≜
|
||||||
\var{coe}\ \widetilde{p}_{\var{dom}}\ f
|
\var{coe}\ \widetilde{p}_{\var{dom}}\ f
|
||||||
≡
|
≡
|
||||||
f \lll \inv{(\idToIso\ \widetilde{p})}
|
f \llll \inv{(\idToIso\ \widetilde{p})}
|
||||||
$$
|
$$
|
||||||
\pause
|
\pause
|
||||||
%
|
%
|
||||||
The base-case becomes:
|
The base-case becomes:
|
||||||
$$
|
$$
|
||||||
d \tp D\ A\ \refl =
|
d \tp D\ A\ \refl =
|
||||||
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}\right)
|
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}\right)
|
||||||
$$
|
$$
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
@ -248,7 +250,7 @@ The category of spans
|
||||||
\framesubtitle{A theorem, proof, cont'd}
|
\framesubtitle{A theorem, proof, cont'd}
|
||||||
$$
|
$$
|
||||||
d \tp
|
d \tp
|
||||||
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}
|
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}
|
||||||
$$
|
$$
|
||||||
\pause
|
\pause
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
@ -257,10 +259,10 @@ The category of spans
|
||||||
\var{coe}\ \refl\ f \\
|
\var{coe}\ \refl\ f \\
|
||||||
& ≡ f
|
& ≡ f
|
||||||
&& \text{neutral element for $\var{coe}$}\\
|
&& \text{neutral element for $\var{coe}$}\\
|
||||||
& ≡ f \lll \identity \\
|
& ≡ f \llll \identity \\
|
||||||
& ≡ f \lll \var{subst}\ \refl\ \identity
|
& ≡ f \llll \var{subst}\ \refl\ \identity
|
||||||
&& \text{neutral element for $\var{subst}$}\\
|
&& \text{neutral element for $\var{subst}$}\\
|
||||||
& ≡ f \lll \inv{(\idToIso\ \refl)}
|
& ≡ f \llll \inv{(\idToIso\ \refl)}
|
||||||
&& \text{By definition of $\idToIso$}\\
|
&& \text{By definition of $\idToIso$}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\pause
|
\pause
|
||||||
|
@ -286,8 +288,8 @@ The category of spans
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
∑_{f \tp \Arrow\ A\ B}
|
∑_{f \tp \Arrow\ A\ B}
|
||||||
(b_{\pairA} \lll f ≡ a_{\pairA}) ×
|
(b_{\pairA} \llll f ≡ a_{\pairA}) ×
|
||||||
(b_{\pairB} \lll f ≡ a_{\pairB})
|
(b_{\pairB} \llll f ≡ a_{\pairB})
|
||||||
$$
|
$$
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
@ -387,7 +389,7 @@ The category of spans
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜}
|
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜}
|
||||||
& ≡ x_{𝒜} \lll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
|
& ≡ x_{𝒜} \llll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
|
||||||
& ≡ y_{𝒜} && \text{Property of span category}
|
& ≡ y_{𝒜} && \text{Property of span category}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -426,10 +428,10 @@ The category of spans
|
||||||
Let $\fmap$ be the map on arrows of $\EndoR$.
|
Let $\fmap$ be the map on arrows of $\EndoR$.
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\join \lll \fmap\ \join
|
\join \llll \fmap\ \join
|
||||||
& ≡ \join \lll \join \\
|
& ≡ \join \llll \join \\
|
||||||
\join \lll \pure\ & ≡ \identity \\
|
\join \llll \pure\ & ≡ \identity \\
|
||||||
\join \lll \fmap\ \pure & ≡ \identity
|
\join \llll \fmap\ \pure & ≡ \identity
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
@ -453,14 +455,14 @@ The category of spans
|
||||||
\Arrow\ B\ (\omapR\ C)
|
\Arrow\ B\ (\omapR\ C)
|
||||||
→
|
→
|
||||||
\Arrow\ A\ (\omapR\ C) \\
|
\Arrow\ A\ (\omapR\ C) \\
|
||||||
f \fish g & ≜ f \rrr (\bind\ g)
|
f \fish g & ≜ f \rrrr (\bind\ g)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\pause
|
\pause
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\bind\ \pure & ≡ \identity_{\omapR\ X} \\
|
\bind\ \pure & ≡ \identity_{\omapR\ X} \\
|
||||||
\pure \fish f & ≡ f \\
|
\pure \fish f & ≡ f \\
|
||||||
(\bind\ f) \rrr (\bind\ g) & ≡ \bind\ (f \fish g)
|
(\bind\ f) \rrrr (\bind\ g) & ≡ \bind\ (f \fish g)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
@ -469,7 +471,7 @@ The category of spans
|
||||||
In the monoidal formulation we can define $\bind$:
|
In the monoidal formulation we can define $\bind$:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\bind\ f ≜ \join \lll \fmap\ f
|
\bind\ f ≜ \join \llll \fmap\ f
|
||||||
$$
|
$$
|
||||||
\pause
|
\pause
|
||||||
%
|
%
|
||||||
|
|
Loading…
Reference in a new issue