Use smaller symbols for arrows in presentation

This commit is contained in:
Frederik Hanghøj Iversen 2018-10-29 12:39:12 +01:00
parent c5020a0d87
commit 8f15001a93
2 changed files with 46 additions and 27 deletions

View file

@ -128,3 +128,20 @@
\newcommand\Monoidal{\varindex{Monoidal}} \newcommand\Monoidal{\varindex{Monoidal}}
\newcommand\Kleisli{\varindex{Kleisli}} \newcommand\Kleisli{\varindex{Kleisli}}
\newcommand\I{\mathds{I}} \newcommand\I{\mathds{I}}
\makeatletter
\DeclareRobustCommand\bigop[1]{%
\mathop{\vphantom{\sum}\mathpalette\bigop@{#1}}\slimits@
}
\newcommand{\bigop@}[2]{%
\vcenter{%
\sbox\z@{$#1\sum$}%
\hbox{\resizebox{\ifx#1\displaystyle.7\fi\dimexpr\ht\z@+\dp\z@}{!}{$\m@th#2$}}%
}%
}
\makeatother
\renewcommand{\llll}{\mathbin{\bigop{\lll}}}
\renewcommand{\rrrr}{\mathbin{\bigop{\rrr}}}
%% \newcommand{\llll}{lll}
%% \newcommand{\rrrr}{rrr}

View file

@ -1,4 +1,5 @@
\documentclass[a4paper]{beamer} \documentclass[a4paper]{beamer}
%% \documentclass[a4paper,handout]{beamer}
%% \usecolortheme[named=seagull]{structure} %% \usecolortheme[named=seagull]{structure}
\input{packages.tex} \input{packages.tex}
@ -82,20 +83,21 @@ The category of spans
\Object & \tp \Type \\ \Object & \tp \Type \\
\Arrow & \tp \Object\Object\Type \\ \Arrow & \tp \Object\Object\Type \\
\identity & \tp \Arrow\ A\ A \\ \identity & \tp \Arrow\ A\ A \\
\lll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C \llll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
\end{align*} \end{align*}
% %
\pause \pause
Laws: Laws:
% %
$$ \begin{align*}
h \lll (g \lll f) ≡ (h \lll g) \lll f \var{isAssociative} & \tp
$$ h \llll (g \llll f) ≡ (h \llll g) \llll f \\
$$ \var{isIdentity} & \tp
(\identity \lll f ≡ f) (\identity \llll f ≡ f)
× ×
(f \lll \identity ≡ f) (f \llll \identity ≡ f)
$$ \end{align*}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{Pre categories} \frametitle{Pre categories}
@ -208,7 +210,7 @@ The category of spans
\label{eq:coeDom} \label{eq:coeDom}
\tag{$\var{coeDom}$} \tag{$\var{coeDom}$}
_{f \tp A → X} _{f \tp A → X}
\var{coe}\ p_{\var{dom}}\ f ≡ f \lll \inv{\iota} \var{coe}\ p_{\var{dom}}\ f ≡ f \llll \inv{\iota}
\end{align} \end{align}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -216,8 +218,8 @@ The category of spans
\framesubtitle{A theorem, proof} \framesubtitle{A theorem, proof}
\begin{align*} \begin{align*}
\var{coe}\ p_{\var{dom}}\ f \var{coe}\ p_{\var{dom}}\ f
& ≡ f \lll (\idToIso\ p)_1 && \text{By path-induction} \\ & ≡ f \llll (\idToIso\ p)_1 && \text{By path-induction} \\
& ≡ f \lll \inv{\iota} & ≡ f \llll \inv{\iota}
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\ && \text{$\idToIso$ and $\isoToId$ are inverses}\\
\end{align*} \end{align*}
\pause \pause
@ -233,14 +235,14 @@ The category of spans
D\ \widetilde{B}\ \widetilde{p} D\ \widetilde{B}\ \widetilde{p}
\var{coe}\ \widetilde{p}_{\var{dom}}\ f \var{coe}\ \widetilde{p}_{\var{dom}}\ f
f \lll \inv{(\idToIso\ \widetilde{p})} f \llll \inv{(\idToIso\ \widetilde{p})}
$$ $$
\pause \pause
% %
The base-case becomes: The base-case becomes:
$$ $$
d \tp D\ A\ \refl = d \tp D\ A\ \refl =
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}\right) \left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}\right)
$$ $$
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -248,7 +250,7 @@ The category of spans
\framesubtitle{A theorem, proof, cont'd} \framesubtitle{A theorem, proof, cont'd}
$$ $$
d \tp d \tp
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)} \var{coe}\ \refl_{\var{dom}}\ f ≡ f \llll \inv{(\idToIso\ \refl)}
$$ $$
\pause \pause
\begin{align*} \begin{align*}
@ -257,10 +259,10 @@ The category of spans
\var{coe}\ \refl\ f \\ \var{coe}\ \refl\ f \\
& ≡ f & ≡ f
&& \text{neutral element for $\var{coe}$}\\ && \text{neutral element for $\var{coe}$}\\
& ≡ f \lll \identity \\ & ≡ f \llll \identity \\
& ≡ f \lll \var{subst}\ \refl\ \identity & ≡ f \llll \var{subst}\ \refl\ \identity
&& \text{neutral element for $\var{subst}$}\\ && \text{neutral element for $\var{subst}$}\\
& ≡ f \lll \inv{(\idToIso\ \refl)} & ≡ f \llll \inv{(\idToIso\ \refl)}
&& \text{By definition of $\idToIso$}\\ && \text{By definition of $\idToIso$}\\
\end{align*} \end{align*}
\pause \pause
@ -286,8 +288,8 @@ The category of spans
% %
$$ $$
_{f \tp \Arrow\ A\ B} _{f \tp \Arrow\ A\ B}
(b_{\pairA} \lll f ≡ a_{\pairA}) × (b_{\pairA} \llll f ≡ a_{\pairA}) ×
(b_{\pairB} \lll f ≡ a_{\pairB}) (b_{\pairB} \llll f ≡ a_{\pairB})
$$ $$
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -387,7 +389,7 @@ The category of spans
% %
\begin{align*} \begin{align*}
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜} \var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜}
& ≡ x_{𝒜} \lll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\ & ≡ x_{𝒜} \llll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
& ≡ y_{𝒜} && \text{Property of span category} & ≡ y_{𝒜} && \text{Property of span category}
\end{align*} \end{align*}
\end{frame} \end{frame}
@ -426,10 +428,10 @@ The category of spans
Let $\fmap$ be the map on arrows of $\EndoR$. Let $\fmap$ be the map on arrows of $\EndoR$.
% %
\begin{align*} \begin{align*}
\join \lll \fmap\ \join \join \llll \fmap\ \join
&\join \lll \join \\ &\join \llll \join \\
\join \lll \pure\ &\identity \\ \join \llll \pure\ &\identity \\
\join \lll \fmap\ \pure &\identity \join \llll \fmap\ \pure &\identity
\end{align*} \end{align*}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -453,14 +455,14 @@ The category of spans
\Arrow\ B\ (\omapR\ C) \Arrow\ B\ (\omapR\ C)
\Arrow\ A\ (\omapR\ C) \\ \Arrow\ A\ (\omapR\ C) \\
f \fish g & ≜ f \rrr (\bind\ g) f \fish g & ≜ f \rrrr (\bind\ g)
\end{align*} \end{align*}
\pause \pause
% %
\begin{align*} \begin{align*}
\bind\ \pure &\identity_{\omapR\ X} \\ \bind\ \pure &\identity_{\omapR\ X} \\
\pure \fish f & ≡ f \\ \pure \fish f & ≡ f \\
(\bind\ f) \rrr (\bind\ g) &\bind\ (f \fish g) (\bind\ f) \rrrr (\bind\ g) &\bind\ (f \fish g)
\end{align*} \end{align*}
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -469,7 +471,7 @@ The category of spans
In the monoidal formulation we can define $\bind$: In the monoidal formulation we can define $\bind$:
% %
$$ $$
\bind\ f ≜ \join \lll \fmap\ f \bind\ f ≜ \join \llll \fmap\ f
$$ $$
\pause \pause
% %