diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index b8584bc..4e784b6 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -25,22 +25,8 @@ Sets {ℓ} = record ; ident = funExt (λ x → refl) , funExt (λ x → refl) } -module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where - private - C-Obj = Object ℂ - _+_ = Arrow ℂ - - RepFunctor : Functor ℂ Sets - RepFunctor = - record - { func* = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B - ; func→ = λ { {c} {c'} f g → {!HomFromArrow {ℂ = {!!}} c' g!} } - ; ident = {!!} - ; distrib = {!!} - } - -Hom0 : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object ℂ → Functor ℂ (Sets {ℓ'}) -Hom0 {ℂ = ℂ} A = record +representable : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object ℂ → Functor ℂ (Sets {ℓ'}) +representable {ℂ = ℂ} A = record { func* = λ B → ℂ.Arrow A B ; func→ = λ f g → f ℂ.⊕ g ; ident = funExt λ _ → snd ℂ.ident @@ -49,12 +35,12 @@ Hom0 {ℂ = ℂ} A = record where open module ℂ = Category ℂ -Hom1 : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object ℂ → Functor (Opposite ℂ) (Sets {ℓ'}) -Hom1 {ℂ = ℂ} B = record +coRepresentable : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object (Opposite ℂ) → Functor (Opposite ℂ) (Sets {ℓ'}) +coRepresentable {ℂ = ℂ} B = record { func* = λ A → ℂ.Arrow A B - ; func→ = λ f g → {!!} ℂ.⊕ {!!} - ; ident = {!!} - ; distrib = {!!} + ; func→ = λ f g → g ℂ.⊕ f + ; ident = funExt λ x → fst ℂ.ident + ; distrib = funExt λ x → ℂ.assoc } where open module ℂ = Category ℂ diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index f508633..a30aee4 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -128,8 +128,8 @@ Opposite ℂ = where open module ℂ = Category ℂ -Hom : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → (A B : Object ℂ) → Set ℓ' -Hom {ℂ = ℂ} A B = Arrow ℂ A B +Hom : {ℓ ℓ' : Level} → (ℂ : Category {ℓ} {ℓ'}) → (A B : Object ℂ) → Set ℓ' +Hom ℂ A B = Arrow ℂ A B module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where private @@ -138,5 +138,5 @@ module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where _+_ = _⊕_ ℂ HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B') - → Hom {ℂ = ℂ} A B → Hom {ℂ = ℂ} A B' + → Hom ℂ A B → Hom ℂ A B' HomFromArrow _A g = λ f → g + f