Use omap/fmap
This commit is contained in:
parent
bdd67aee53
commit
9173468b03
|
@ -22,9 +22,7 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
open NaturalTransformation ℂ ℂ
|
||||
record RawMonad : Set ℓ where
|
||||
field
|
||||
-- TODO rename fields here
|
||||
-- R ~ m
|
||||
R : EndoFunctor ℂ
|
||||
R : EndoFunctor ℂ
|
||||
pureNT : NaturalTransformation F.identity R
|
||||
joinNT : NaturalTransformation F[ R ∘ R ] R
|
||||
|
||||
|
@ -40,9 +38,6 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
joinN : Natural F[ R ∘ R ] R joinT
|
||||
joinN = proj₂ joinNT
|
||||
|
||||
private
|
||||
module R = Functor R
|
||||
|
||||
Romap = Functor.func* R
|
||||
Rfmap = Functor.func→ R
|
||||
|
||||
|
@ -51,15 +46,15 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
|
||||
IsAssociative : Set _
|
||||
IsAssociative = {X : Object}
|
||||
→ joinT X ∘ R.func→ (joinT X) ≡ joinT X ∘ joinT (R.func* X)
|
||||
→ joinT X ∘ Rfmap (joinT X) ≡ joinT X ∘ joinT (Romap X)
|
||||
IsInverse : Set _
|
||||
IsInverse = {X : Object}
|
||||
→ joinT X ∘ pureT (R.func* X) ≡ 𝟙
|
||||
× joinT X ∘ R.func→ (pureT X) ≡ 𝟙
|
||||
IsNatural = ∀ {X Y} f → joinT Y ∘ R.func→ f ∘ pureT X ≡ f
|
||||
IsDistributive = ∀ {X Y Z} (g : Arrow Y (R.func* Z)) (f : Arrow X (R.func* Y))
|
||||
→ joinT Z ∘ R.func→ g ∘ (joinT Y ∘ R.func→ f)
|
||||
≡ joinT Z ∘ R.func→ (joinT Z ∘ R.func→ g ∘ f)
|
||||
→ joinT X ∘ pureT (Romap X) ≡ 𝟙
|
||||
× joinT X ∘ Rfmap (pureT X) ≡ 𝟙
|
||||
IsNatural = ∀ {X Y} f → joinT Y ∘ Rfmap f ∘ pureT X ≡ f
|
||||
IsDistributive = ∀ {X Y Z} (g : Arrow Y (Romap Z)) (f : Arrow X (Romap Y))
|
||||
→ joinT Z ∘ Rfmap g ∘ (joinT Y ∘ Rfmap f)
|
||||
≡ joinT Z ∘ Rfmap (joinT Z ∘ Rfmap g ∘ f)
|
||||
|
||||
record IsMonad (raw : RawMonad) : Set ℓ where
|
||||
open RawMonad raw public
|
||||
|
|
Loading…
Reference in a new issue