Rename stuff
This commit is contained in:
parent
86d3d7368e
commit
92f0f8e0f0
|
@ -10,15 +10,8 @@ open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Functor
|
open import Cat.Functor
|
||||||
|
|
||||||
-- Tip from Andrea:
|
open import Cat.Equality
|
||||||
-- Use co-patterns - they help with showing more understandable types in goals.
|
open Equality.Data.Product
|
||||||
lift-eq : ∀ {ℓ} {A B : Set ℓ} {a a' : A} {b b' : B} → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
|
|
||||||
fst (lift-eq a b i) = a i
|
|
||||||
snd (lift-eq a b i) = b i
|
|
||||||
|
|
||||||
eqpair : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} {a a' : A} {b b' : B}
|
|
||||||
→ a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
|
|
||||||
eqpair eqa eqb i = eqa i , eqb i
|
|
||||||
|
|
||||||
open Functor
|
open Functor
|
||||||
open IsFunctor
|
open IsFunctor
|
||||||
|
@ -27,23 +20,28 @@ open Category hiding (_∘_)
|
||||||
-- The category of categories
|
-- The category of categories
|
||||||
module _ (ℓ ℓ' : Level) where
|
module _ (ℓ ℓ' : Level) where
|
||||||
private
|
private
|
||||||
module _ {A B C D : Category ℓ ℓ'} {f : Functor A B} {g : Functor B C} {h : Functor C D} where
|
module _ {𝔸 𝔹 ℂ 𝔻 : Category ℓ ℓ'} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 ℂ} {H : Functor ℂ 𝔻} where
|
||||||
private
|
private
|
||||||
eq* : func* (h ∘f (g ∘f f)) ≡ func* ((h ∘f g) ∘f f)
|
eq* : func* (H ∘f (G ∘f F)) ≡ func* ((H ∘f G) ∘f F)
|
||||||
eq* = refl
|
eq* = refl
|
||||||
eq→ : PathP
|
eq→ : PathP
|
||||||
(λ i → {x y : A .Object} → A .Arrow x y → D .Arrow (eq* i x) (eq* i y))
|
(λ i → {A B : 𝔸 .Object} → 𝔸 [ A , B ] → 𝔻 [ eq* i A , eq* i B ])
|
||||||
(func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f))
|
(func→ (H ∘f (G ∘f F))) (func→ ((H ∘f G) ∘f F))
|
||||||
eq→ = refl
|
eq→ = refl
|
||||||
postulate eqI : PathP
|
postulate
|
||||||
(λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ D .𝟙 {eq* i c})
|
eqI
|
||||||
((h ∘f (g ∘f f)) .isFunctor .ident)
|
: (λ i → ∀ {A : 𝔸 .Object} → eq→ i (𝔸 .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A})
|
||||||
(((h ∘f g) ∘f f) .isFunctor .ident)
|
[ (H ∘f (G ∘f F)) .isFunctor .ident
|
||||||
postulate eqD : PathP (λ i → { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
|
≡ ((H ∘f G) ∘f F) .isFunctor .ident
|
||||||
→ eq→ i (A [ a' ∘ a ]) ≡ D [ eq→ i a' ∘ eq→ i a ])
|
]
|
||||||
((h ∘f (g ∘f f)) .isFunctor .distrib) (((h ∘f g) ∘f f) .isFunctor .distrib)
|
eqD
|
||||||
|
: (λ i → ∀ {A B C} {f : 𝔸 [ A , B ]} {g : 𝔸 [ B , C ]}
|
||||||
|
→ eq→ i (𝔸 [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ])
|
||||||
|
[ (H ∘f (G ∘f F)) .isFunctor .distrib
|
||||||
|
≡ ((H ∘f G) ∘f F) .isFunctor .distrib
|
||||||
|
]
|
||||||
|
|
||||||
assc : h ∘f (g ∘f f) ≡ (h ∘f g) ∘f f
|
assc : H ∘f (G ∘f F) ≡ (H ∘f G) ∘f F
|
||||||
assc = Functor≡ eq* eq→ (IsFunctor≡ eqI eqD)
|
assc = Functor≡ eq* eq→ (IsFunctor≡ eqI eqD)
|
||||||
|
|
||||||
module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where
|
module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where
|
||||||
|
@ -94,16 +92,15 @@ module _ (ℓ ℓ' : Level) where
|
||||||
; _∘_ = _∘f_
|
; _∘_ = _∘f_
|
||||||
-- What gives here? Why can I not name the variables directly?
|
-- What gives here? Why can I not name the variables directly?
|
||||||
; isCategory = record
|
; isCategory = record
|
||||||
{ assoc = λ {_ _ _ _ f g h} → assc {f = f} {g = g} {h = h}
|
{ assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H}
|
||||||
; ident = ident-r , ident-l
|
; ident = ident-r , ident-l
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} where
|
module _ {ℓ ℓ' : Level} where
|
||||||
Catt = Cat ℓ ℓ'
|
|
||||||
|
|
||||||
module _ (ℂ 𝔻 : Category ℓ ℓ') where
|
module _ (ℂ 𝔻 : Category ℓ ℓ') where
|
||||||
private
|
private
|
||||||
|
Catt = Cat ℓ ℓ'
|
||||||
:Object: = ℂ .Object × 𝔻 .Object
|
:Object: = ℂ .Object × 𝔻 .Object
|
||||||
:Arrow: : :Object: → :Object: → Set ℓ'
|
:Arrow: : :Object: → :Object: → Set ℓ'
|
||||||
:Arrow: (c , d) (c' , d') = Arrow ℂ c c' × Arrow 𝔻 d d'
|
:Arrow: (c , d) (c' , d') = Arrow ℂ c c' × Arrow 𝔻 d d'
|
||||||
|
@ -119,10 +116,10 @@ module _ {ℓ ℓ' : Level} where
|
||||||
instance
|
instance
|
||||||
:isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_
|
:isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_
|
||||||
:isCategory: = record
|
:isCategory: = record
|
||||||
{ assoc = eqpair C.assoc D.assoc
|
{ assoc = Σ≡ C.assoc D.assoc
|
||||||
; ident
|
; ident
|
||||||
= eqpair (fst C.ident) (fst D.ident)
|
= Σ≡ (fst C.ident) (fst D.ident)
|
||||||
, eqpair (snd C.ident) (snd D.ident)
|
, Σ≡ (snd C.ident) (snd D.ident)
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
open module C = IsCategory (ℂ .isCategory)
|
open module C = IsCategory (ℂ .isCategory)
|
||||||
|
@ -136,35 +133,38 @@ module _ {ℓ ℓ' : Level} where
|
||||||
; _∘_ = _:⊕:_
|
; _∘_ = _:⊕:_
|
||||||
}
|
}
|
||||||
|
|
||||||
proj₁ : Arrow Catt :product: ℂ
|
proj₁ : Catt [ :product: , ℂ ]
|
||||||
proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } }
|
proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||||
|
|
||||||
proj₂ : Arrow Catt :product: 𝔻
|
proj₂ : Catt [ :product: , 𝔻 ]
|
||||||
proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } }
|
proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||||
|
|
||||||
module _ {X : Object Catt} (x₁ : Arrow Catt X ℂ) (x₂ : Arrow Catt X 𝔻) where
|
module _ {X : Object Catt} (x₁ : Catt [ X , ℂ ]) (x₂ : Catt [ X , 𝔻 ]) where
|
||||||
open Functor
|
open Functor
|
||||||
|
|
||||||
-- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D)
|
|
||||||
-- ident' {c = c} = lift-eq (ident x₁) (ident x₂)
|
|
||||||
|
|
||||||
x : Functor X :product:
|
x : Functor X :product:
|
||||||
x = record
|
x = record
|
||||||
{ func* = λ x → (func* x₁) x , (func* x₂) x
|
{ func* = λ x → x₁ .func* x , x₂ .func* x
|
||||||
; func→ = λ x → func→ x₁ x , func→ x₂ x
|
; func→ = λ x → func→ x₁ x , func→ x₂ x
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
{ ident = lift-eq x₁.ident x₂.ident
|
{ ident = Σ≡ x₁.ident x₂.ident
|
||||||
; distrib = lift-eq x₁.distrib x₂.distrib
|
; distrib = Σ≡ x₁.distrib x₂.distrib
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
open module x₁ = IsFunctor (x₁ .isFunctor)
|
open module x₁ = IsFunctor (x₁ .isFunctor)
|
||||||
open module x₂ = IsFunctor (x₂ .isFunctor)
|
open module x₂ = IsFunctor (x₂ .isFunctor)
|
||||||
|
|
||||||
-- Need to "lift equality of functors"
|
isUniqL : Catt [ proj₁ ∘ x ] ≡ x₁
|
||||||
-- If I want to do this like I do it for pairs it's gonna be a pain.
|
isUniqL = Functor≡ eq* eq→ eqIsF -- Functor≡ refl refl λ i → record { ident = refl i ; distrib = refl i }
|
||||||
postulate isUniqL : Catt [ proj₁ ∘ x ] ≡ x₁
|
where
|
||||||
-- isUniqL = Functor≡ refl refl {!!} {!!}
|
eq* : (Catt [ proj₁ ∘ x ]) .func* ≡ x₁ .func*
|
||||||
|
eq* = refl
|
||||||
|
eq→ : (λ i → {A : X .Object} {B : X .Object} → X [ A , B ] → ℂ [ eq* i A , eq* i B ])
|
||||||
|
[ (Catt [ proj₁ ∘ x ]) .func→ ≡ x₁ .func→ ]
|
||||||
|
eq→ = refl
|
||||||
|
postulate eqIsF : (Catt [ proj₁ ∘ x ]) .isFunctor ≡ x₁ .isFunctor
|
||||||
|
-- eqIsF = IsFunctor≡ {!refl!} {!!}
|
||||||
|
|
||||||
postulate isUniqR : Catt [ proj₂ ∘ x ] ≡ x₂
|
postulate isUniqR : Catt [ proj₂ ∘ x ] ≡ x₂
|
||||||
-- isUniqR = Functor≡ refl refl {!!} {!!}
|
-- isUniqR = Functor≡ refl refl {!!} {!!}
|
||||||
|
|
|
@ -10,7 +10,7 @@ open import Cubical
|
||||||
module Equality where
|
module Equality where
|
||||||
module Data where
|
module Data where
|
||||||
module Product where
|
module Product where
|
||||||
open import Data.Product public
|
open import Data.Product
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} {A : Set ℓa} {B : A → Set ℓb} {a b : Σ A B}
|
module _ {ℓa ℓb : Level} {A : Set ℓa} {B : A → Set ℓb} {a b : Σ A B}
|
||||||
(proj₁≡ : (λ _ → A) [ proj₁ a ≡ proj₁ b ])
|
(proj₁≡ : (λ _ → A) [ proj₁ a ≡ proj₁ b ])
|
||||||
|
|
|
@ -48,8 +48,8 @@ module _ {ℓ ℓ' : Level} {ℂ 𝔻 : Category ℓ ℓ'} where
|
||||||
|
|
||||||
Functor≡ : {F G : Functor ℂ 𝔻}
|
Functor≡ : {F G : Functor ℂ 𝔻}
|
||||||
→ (eq* : F .func* ≡ G .func*)
|
→ (eq* : F .func* ≡ G .func*)
|
||||||
→ (eq→ : PathP (λ i → ∀ {x y} → ℂ [ x , y ] → 𝔻 [ eq* i x , eq* i y ])
|
→ (eq→ : (λ i → ∀ {x y} → ℂ [ x , y ] → 𝔻 [ eq* i x , eq* i y ])
|
||||||
(F .func→) (G .func→))
|
[ F .func→ ≡ G .func→ ])
|
||||||
-- → (eqIsF : PathP (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) (F .isFunctor) (G .isFunctor))
|
-- → (eqIsF : PathP (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) (F .isFunctor) (G .isFunctor))
|
||||||
→ (eqIsFunctor : (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) [ F .isFunctor ≡ G .isFunctor ])
|
→ (eqIsFunctor : (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) [ F .isFunctor ≡ G .isFunctor ])
|
||||||
→ F ≡ G
|
→ F ≡ G
|
||||||
|
|
Loading…
Reference in a new issue