Attempt at proving pureNTEq

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-07 15:23:07 +01:00
parent bf605e09fe
commit 93d075a6d3
2 changed files with 54 additions and 5 deletions

View file

@ -61,6 +61,7 @@ module _ {c c' d d'}
record IsFunctor (F : RawFunctor) : 𝓤 where
open RawFunctor F public
field
-- TODO Really ought to be preserves identity or something like this.
isIdentity : IsIdentity
isDistributive : IsDistributive

View file

@ -534,13 +534,61 @@ module _ {a b : Level} { : Category a b} where
Req = Functor≡ rawEq
open NaturalTransformation
postulate
pureNTEq : (λ i NaturalTransformation F.identity (Req i))
pureTEq : M.RawMonad.pureT (backRaw (forth m)) pureT
pureTEq = funExt (λ X refl)
-- TODO: Make equaility principle for natural transformations that allows
-- us to only focus on the data-part but for heterogeneous paths!
--
-- It should be something like (but not exactly because this is ill-typed!)
--
-- P : I → Set -- A family that varies over natural transformations.
-- θ : P i0
-- η : P i1
NaturalTransformation~≡ : {F G} {P : I Set _} {θ η : NaturalTransformation F G} proj₁ θ proj₁ η _ [ θ η ]
NaturalTransformation~≡ = {!!}
pureNTEq : (λ i NaturalTransformation F.identity (Req i))
[ M.RawMonad.pureNT (backRaw (forth m)) pureNT ]
pureNTEq = res
where
Base = Transformation F.identity R
base : Base
base = M.RawMonad.pureT (backRaw (forth m))
target : Base
target = pureT
-- No matter what the proof of naturality is (whether it'd be at `base`
-- or at `target` propositionality of naturality means that we can prove
-- two natural transformations equal just by focusing on the data-part.
d : {nat : Natural F.identity R base}
(λ i NaturalTransformation F.identity R)
[ (base , nat)
(target , nat)
]
d = NaturalTransformation≡ F.identity R pureTEq
-- I think that `d` should be the "base-case" somehow in my
-- path-induction but I don't know how to define a suitable type-family.
D : (y : Base) ({!!} y) Set _
D y eq = {!!}
res
: (λ i NaturalTransformation F.identity (Req i))
[ M.RawMonad.pureNT (backRaw (forth m)) pureNT ]
joinNTEq : (λ i NaturalTransformation F[ Req i Req i ] (Req i))
[ M.RawMonad.joinNT (backRaw (forth m)) joinNT ]
res = pathJ D d base pureTEq {!!}
joinTEq : M.RawMonad.joinT (backRaw (forth m)) joinT
joinTEq = funExt (λ X begin
M.RawMonad.joinT (backRaw (forth m)) X ≡⟨⟩
KM.join ≡⟨⟩
joinT X Rfmap 𝟙 ≡⟨ cong (λ φ joinT X φ) R.isIdentity
joinT X 𝟙 ≡⟨ proj₁ .isIdentity
joinT X )
joinNTEq : (λ i NaturalTransformation F[ Req i Req i ] (Req i))
[ M.RawMonad.joinNT (backRaw (forth m)) joinNT ]
joinNTEq = NaturalTransformation~≡ joinTEq
backRawEq : backRaw (forth m) M.Monad.raw m
-- stuck
M.RawMonad.R (backRawEq i) = Req i
M.RawMonad.pureNT (backRawEq i) = pureNTEq i
M.RawMonad.joinNT (backRawEq i) = joinNTEq i