Use macros extensively
This commit is contained in:
parent
179570edf0
commit
9842c66eea
|
@ -118,7 +118,7 @@ B\ a$:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:funExt}
|
\label{eq:funExt}
|
||||||
\var{funExt} \tp \prod_{a \tp A} f\ a \equiv g\ a \to f \equiv g
|
\funExt \tp \prod_{a \tp A} f\ a \equiv g\ a \to f \equiv g
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
%% p = λ i a → p a i
|
%% p = λ i a → p a i
|
||||||
|
@ -133,7 +133,7 @@ by the term:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:funExt}
|
\label{eq:funExt}
|
||||||
\var{funExt}\ p \defeq λ i\ a → p\ a\ i
|
\funExt\ p \defeq λ i\ a → p\ a\ i
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
With this we can now prove the desired equality $f \equiv g$ from section
|
With this we can now prove the desired equality $f \equiv g$ from section
|
||||||
|
@ -141,7 +141,7 @@ With this we can now prove the desired equality $f \equiv g$ from section
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
p & \tp f \equiv g \\
|
p & \tp f \equiv g \\
|
||||||
p & \defeq \var{funExt}\ \lambda n \to \refl
|
p & \defeq \funExt\ \lambda n \to \refl
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
Paths have some other important properties, but they are not the focus of
|
Paths have some other important properties, but they are not the focus of
|
||||||
|
|
|
@ -88,7 +88,7 @@ definitions: If we let $p$ be a witness to the identity law, which formally is:
|
||||||
\id \comp f \equiv f \x f \comp \id \equiv f
|
\id \comp f \equiv f \x f \comp \id \equiv f
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
Then we can construct the identity isomorphism $\var{idIso} \tp \identity,
|
Then we can construct the identity isomorphism $\idIso \tp \identity,
|
||||||
\identity, p \tp A \approxeq A$ for any object $A$. Here $\approxeq$ denotes
|
\identity, p \tp A \approxeq A$ for any object $A$. Here $\approxeq$ denotes
|
||||||
isomorphism on objects (whereas $\cong$ denotes isomorphism of types). This will
|
isomorphism on objects (whereas $\cong$ denotes isomorphism of types). This will
|
||||||
be elaborated further on in sections \S\ref{sec:equiv} and
|
be elaborated further on in sections \S\ref{sec:equiv} and
|
||||||
|
@ -96,7 +96,7 @@ be elaborated further on in sections \S\ref{sec:equiv} and
|
||||||
an isomorphism from \emph{any} path:
|
an isomorphism from \emph{any} path:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\var{idToIso} \tp A ≡ B → A ≊ B
|
\idToIso \tp A ≡ B → A ≊ B
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
The univalence criterion for categories states that this map must be an
|
The univalence criterion for categories states that this map must be an
|
||||||
|
@ -168,9 +168,9 @@ is by way of the `combinators' $\propPi$ and $\propSig$ presented in sections
|
||||||
\S\ref{sec:propPi} and \S\ref{sec:propSig}:
|
\S\ref{sec:propPi} and \S\ref{sec:propSig}:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{propPi} & \tp \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\prod_{a \tp A} P\ a\right)
|
\propPi & \tp \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\prod_{a \tp A} P\ a\right)
|
||||||
\\
|
\\
|
||||||
\var{propSig} & \tp \isProp\ A \to \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\sum_{a \tp A} P\ a\right)
|
\propSig & \tp \isProp\ A \to \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\sum_{a \tp A} P\ a\right)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
So the proof goes like this: We `eliminate' the 3 function abstractions by
|
So the proof goes like this: We `eliminate' the 3 function abstractions by
|
||||||
|
@ -202,7 +202,7 @@ Where The definition of $\IsPreCategory$ is the triple:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{isAssociative} & \tp \var{IsAssociative}\\
|
\var{isAssociative} & \tp \var{IsAssociative}\\
|
||||||
\var{isIdentity} & \tp \var{IsIdentity}\\
|
\isIdentity & \tp \var{IsIdentity}\\
|
||||||
\var{arrowsAreSets} & \tp \var{ArrowsAreSets}
|
\var{arrowsAreSets} & \tp \var{ArrowsAreSets}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
|
@ -245,8 +245,8 @@ $i$ becomes the triple:
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
& \var{propIsAssociative} && a.\var{isAssociative}\
|
& \var{propIsAssociative} && a.\var{isAssociative}\
|
||||||
&& b.\var{isAssociative} && i \\
|
&& b.\var{isAssociative} && i \\
|
||||||
& \var{propIsIdentity} && a.\var{isIdentity}\
|
& \propIsIdentity && a.\isIdentity\
|
||||||
&& b.\var{isIdentity} && i \\
|
&& b.\isIdentity && i \\
|
||||||
& \var{propArrowsAreSets} && a.\var{arrowsAreSets}\
|
& \var{propArrowsAreSets} && a.\var{arrowsAreSets}\
|
||||||
&& b.\var{arrowsAreSets} && i
|
&& b.\var{arrowsAreSets} && i
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
|
@ -259,7 +259,7 @@ type would already not be possible, since we at least need extensionality (the
|
||||||
projections are all $\prod$-types). Assuming we had functional extensionality
|
projections are all $\prod$-types). Assuming we had functional extensionality
|
||||||
available to us as an axiom, we would use functional extensionality (in
|
available to us as an axiom, we would use functional extensionality (in
|
||||||
reverse?) to retrieve the equalities in $a$ and $b$, pattern-match on them to
|
reverse?) to retrieve the equalities in $a$ and $b$, pattern-match on them to
|
||||||
see that they are both $\var{refl}$ and then close the proof with $\var{refl}$.
|
see that they are both $\refl$ and then close the proof with $\refl$.
|
||||||
Of course this theorem is not so interesting in the setting of ITT since we know
|
Of course this theorem is not so interesting in the setting of ITT since we know
|
||||||
a priori that equality proofs are unique.
|
a priori that equality proofs are unique.
|
||||||
|
|
||||||
|
@ -287,14 +287,14 @@ latter. This is because $\isProp$ talks about non-dependent paths. So we need to
|
||||||
'promote' the result that univalence is a proposition to a heterogeneous path.
|
'promote' the result that univalence is a proposition to a heterogeneous path.
|
||||||
To this end we can use $\lemPropF$, which was introduced in \S\ref{sec:lemPropF}.
|
To this end we can use $\lemPropF$, which was introduced in \S\ref{sec:lemPropF}.
|
||||||
|
|
||||||
In this case $A = \var{IsIdentity}\ \identity$ and $B = \var{Univalent}$. We've
|
In this case $A = \var{IsIdentity}\ \identity$ and $B = \Univalent$. We've
|
||||||
shown that being a category is a proposition, a result that holds for any choice
|
shown that being a category is a proposition, a result that holds for any choice
|
||||||
of identity proof. Finally we must provide a proof that the identity proofs at
|
of identity proof. Finally we must provide a proof that the identity proofs at
|
||||||
$a$ and $b$ are indeed the same, this we can extract from $p$ by applying
|
$a$ and $b$ are indeed the same, this we can extract from $p$ by applying
|
||||||
congruence of paths:
|
congruence of paths:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\congruence\ \var{isIdentity}\ p
|
\congruence\ \isIdentity\ p
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
And this finishes the proof that being-a-category is a mere proposition
|
And this finishes the proof that being-a-category is a mere proposition
|
||||||
|
@ -447,8 +447,8 @@ an isomorphism $A \approxeq B$ in some category $\bC$ be given. Name the
|
||||||
isomorphism $\iota \tp A \to B$ and its inverse $\inv{\iota} \tp B \to A$.
|
isomorphism $\iota \tp A \to B$ and its inverse $\inv{\iota} \tp B \to A$.
|
||||||
Since $\bC$ is a category (and therefore univalent) the isomorphism induces a
|
Since $\bC$ is a category (and therefore univalent) the isomorphism induces a
|
||||||
path $p \tp A \equiv B$. From this equality we can get two further paths:
|
path $p \tp A \equiv B$. From this equality we can get two further paths:
|
||||||
$p_{\var{dom}} \tp \var{Arrow}\ A\ X \equiv \var{Arrow}\ B\ X$ and
|
$p_{\var{dom}} \tp \Arrow\ A\ X \equiv \Arrow\ B\ X$ and
|
||||||
$p_{\var{cod}} \tp \var{Arrow}\ X\ A \equiv \var{Arrow}\ X\ B$. We
|
$p_{\var{cod}} \tp \Arrow\ X\ A \equiv \Arrow\ X\ B$. We
|
||||||
then have the following two theorems:
|
then have the following two theorems:
|
||||||
%
|
%
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
@ -465,26 +465,26 @@ I will give the proof of the first theorem here, the second one is analogous.
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{coe}\ p_{\var{dom}}\ f
|
\var{coe}\ p_{\var{dom}}\ f
|
||||||
& \equiv f \lll \inv{(\var{idToIso}\ p)} && \text{lemma} \\
|
& \equiv f \lll \inv{(\idToIso\ p)} && \text{lemma} \\
|
||||||
& \equiv f \lll \inv{\iota}
|
& \equiv f \lll \inv{\iota}
|
||||||
&& \text{$\var{idToIso}$ and $\var{isoToId}$ are inverses}\\
|
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
In the second step we use the fact that $p$ is constructed from the isomorphism
|
In the second step we use the fact that $p$ is constructed from the isomorphism
|
||||||
$\iota$ -- $\inv{(\var{idToIso}\ p)}$ denotes the map $B \to A$ induced by the
|
$\iota$ -- $\inv{(\idToIso\ p)}$ denotes the map $B \to A$ induced by the
|
||||||
isomorphism $\var{idToIso}\ p \tp A \cong B$. The helper-lemma is similar to
|
isomorphism $\idToIso\ p \tp A \cong B$. The helper-lemma is similar to
|
||||||
what we're trying to prove but talks about paths rather than isomorphisms:
|
what we're trying to prove but talks about paths rather than isomorphisms:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:coeDomIso}
|
\label{eq:coeDomIso}
|
||||||
\prod_{f \tp \var{Arrow}\ A\ B} \prod_{p \tp A \equiv B}
|
\prod_{f \tp \Arrow\ A\ B} \prod_{p \tp A \equiv B}
|
||||||
\var{coe}\ p_{\var{dom}}\ f \equiv f \lll \inv{(\var{idToIso}\ p)}
|
\var{coe}\ p_{\var{dom}}\ f \equiv f \lll \inv{(\idToIso\ p)}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
Again $p_{\var{dom}}$ denotes the path $\var{Arrow}\ A\ X \equiv
|
Again $p_{\var{dom}}$ denotes the path $\Arrow\ A\ X \equiv
|
||||||
\var{Arrow}\ B\ X$ induced by $p$. To prove this statement I let $f$ and $p$ be
|
\Arrow\ B\ X$ induced by $p$. To prove this statement I let $f$ and $p$ be
|
||||||
given and then invoke based-path-induction. The induction will be based at $A
|
given and then invoke based-path-induction. The induction will be based at $A
|
||||||
\tp \var{Object}$ Let $\widetilde{B} \tp \Object$ and $\widetilde{p} \tp A
|
\tp \Object$ Let $\widetilde{B} \tp \Object$ and $\widetilde{p} \tp A
|
||||||
\equiv \widetilde{B}$ be given. The family that we perform induction over will
|
\equiv \widetilde{B}$ be given. The family that we perform induction over will
|
||||||
be:
|
be:
|
||||||
%
|
%
|
||||||
|
@ -494,20 +494,20 @@ D\ \widetilde{B}\ \widetilde{p} \defeq
|
||||||
%% \prod_{\widetilde{p} \tp A \equiv \widetilde{B}}
|
%% \prod_{\widetilde{p} \tp A \equiv \widetilde{B}}
|
||||||
\var{coe}\ {\widetilde{p}}^*\ f
|
\var{coe}\ {\widetilde{p}}^*\ f
|
||||||
\equiv
|
\equiv
|
||||||
f \lll \inv{(\var{idToIso}\ \widetilde{p})}
|
f \lll \inv{(\idToIso\ \widetilde{p})}
|
||||||
\end{align}
|
\end{align}
|
||||||
The base-case therefore becomes
|
The base-case therefore becomes
|
||||||
$d \tp \var{coe}\ \refl^*\ f \equiv f \lll \inv{(\var{idToIso}\ \refl)}$
|
$d \tp \var{coe}\ \refl^*\ f \equiv f \lll \inv{(\idToIso\ \refl)}$
|
||||||
and is inhabited by:
|
and is inhabited by:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{coe}\ \refl^*\ f
|
\var{coe}\ \refl^*\ f
|
||||||
& \equiv f
|
& \equiv f
|
||||||
&& \text{$\refl$ is a neutral element for $\var{coe}$}\\
|
&& \text{$\refl$ is a neutral element for $\var{coe}$}\\
|
||||||
& \equiv f \lll \var{identity} \\
|
& \equiv f \lll \identity \\
|
||||||
& \equiv f \lll \var{subst}\ \var{refl}\ \var{identity}
|
& \equiv f \lll \var{subst}\ \refl\ \identity
|
||||||
&& \text{$\refl$ is a neutral element for $\var{subst}$}\\
|
&& \text{$\refl$ is a neutral element for $\var{subst}$}\\
|
||||||
& \equiv f \lll \inv{(\var{idToIso}\ \refl)}
|
& \equiv f \lll \inv{(\idToIso\ \refl)}
|
||||||
&& \text{By definition of $\var{idToIso}$}\\
|
&& \text{By definition of $\idToIso$}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
To close the based-path-induction we must supply the value ``at the other''. In
|
To close the based-path-induction we must supply the value ``at the other''. In
|
||||||
|
@ -516,7 +516,7 @@ In summary the proof of \ref{eq:coeDomIso} is the term:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:pathJ-example}
|
\label{eq:pathJ-example}
|
||||||
\var{pathJ}\ D\ d\ B\ p
|
\pathJ\ D\ d\ B\ p
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
And this finishes the proof of \ref{eq:coeDomIso} and thus \ref{eq:coeDom}.
|
And this finishes the proof of \ref{eq:coeDomIso} and thus \ref{eq:coeDom}.
|
||||||
|
@ -552,7 +552,7 @@ Since $\rrr$ is reverse function composition this is just the symmetric version
|
||||||
of associativity.
|
of associativity.
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\var{identity} \rrr f \equiv f \x f \rrr identity \equiv f
|
\identity \rrr f \equiv f \x f \rrr identity \equiv f
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
This is just the swapped version of identity.
|
This is just the swapped version of identity.
|
||||||
|
@ -570,30 +570,30 @@ B)$ is an isomorphism. Let us denote it's inverse with $\isoToId \tp (A
|
||||||
\approxeq B) \to (A \equiv B)$. If we squint we can see what we need is a way to
|
\approxeq B) \to (A \equiv B)$. If we squint we can see what we need is a way to
|
||||||
go between $\wideoverbar{\approxeq}$ and $\approxeq$.
|
go between $\wideoverbar{\approxeq}$ and $\approxeq$.
|
||||||
|
|
||||||
An inhabitant of $A \approxeq B$ is simply an arrow $f \tp \var{Arrow}\ A\ B$
|
An inhabitant of $A \approxeq B$ is simply an arrow $f \tp \Arrow\ A\ B$
|
||||||
and it's inverse $g \tp \var{Arrow}\ B\ A$. In the opposite category $g$ will
|
and it's inverse $g \tp \Arrow\ B\ A$. In the opposite category $g$ will
|
||||||
play the role of the isomorphism and $f$ will be the inverse. Similarly we can
|
play the role of the isomorphism and $f$ will be the inverse. Similarly we can
|
||||||
go in the opposite direction. I name these maps $\var{shuffle} \tp (A \approxeq
|
go in the opposite direction. I name these maps $\shuffle \tp (A \approxeq
|
||||||
B) \to (A \wideoverbar{\approxeq} B)$ and $\var{shuffle}^{-1} \tp (A
|
B) \to (A \wideoverbar{\approxeq} B)$ and $\shuffle^{-1} \tp (A
|
||||||
\wideoverbar{\approxeq} B) \to (A \approxeq B)$ respectively.
|
\wideoverbar{\approxeq} B) \to (A \approxeq B)$ respectively.
|
||||||
|
|
||||||
As the inverse of $\wideoverbar{\idToIso}$ I will pick $\wideoverbar{\isoToId}
|
As the inverse of $\wideoverbar{\idToIso}$ I will pick $\wideoverbar{\isoToId}
|
||||||
\defeq \isoToId \comp \var{shuffle}$. The proof that they are inverses go as
|
\defeq \isoToId \comp \shuffle$. The proof that they are inverses go as
|
||||||
follows:
|
follows:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\wideoverbar{\isoToId} \comp \wideoverbar{\idToIso} & =
|
\wideoverbar{\isoToId} \comp \wideoverbar{\idToIso} & =
|
||||||
\isoToId \comp \var{shuffle} \comp \wideoverbar{\idToIso}
|
\isoToId \comp \shuffle \comp \wideoverbar{\idToIso}
|
||||||
\\
|
\\
|
||||||
%% ≡⟨ cong (λ φ → φ x) (cong (λ φ → η ⊙ shuffle ⊙ φ) (funExt lem)) ⟩ \\
|
%% ≡⟨ cong (λ φ → φ x) (cong (λ φ → η ⊙ shuffle ⊙ φ) (funExt lem)) ⟩ \\
|
||||||
%
|
%
|
||||||
& \equiv
|
& \equiv
|
||||||
\isoToId \comp \var{shuffle} \comp \inv{\var{shuffle}} \comp \idToIso
|
\isoToId \comp \shuffle \comp \inv{\shuffle} \comp \idToIso
|
||||||
&& \text{lemma} \\
|
&& \text{lemma} \\
|
||||||
%% ≡⟨⟩ \\
|
%% ≡⟨⟩ \\
|
||||||
& \equiv
|
& \equiv
|
||||||
\isoToId \comp \idToIso
|
\isoToId \comp \idToIso
|
||||||
&& \text{$\var{shuffle}$ is an isomorphism} \\
|
&& \text{$\shuffle$ is an isomorphism} \\
|
||||||
& \equiv
|
& \equiv
|
||||||
\identity
|
\identity
|
||||||
&& \text{$\isoToId$ is an isomorphism}
|
&& \text{$\isoToId$ is an isomorphism}
|
||||||
|
@ -602,7 +602,7 @@ follows:
|
||||||
The other direction is analogous.
|
The other direction is analogous.
|
||||||
|
|
||||||
The lemma used in step 2 of this proof states that $\wideoverbar{idToIso} \equiv
|
The lemma used in step 2 of this proof states that $\wideoverbar{idToIso} \equiv
|
||||||
\inv{\var{shuffle}} \comp \idToIso$. This is a rather straight-forward proof
|
\inv{\shuffle} \comp \idToIso$. This is a rather straight-forward proof
|
||||||
since being-an-inverse-of is a proposition, so it suffices to show that their
|
since being-an-inverse-of is a proposition, so it suffices to show that their
|
||||||
first components are equal, but this holds judgmentally.
|
first components are equal, but this holds judgmentally.
|
||||||
|
|
||||||
|
@ -610,7 +610,7 @@ This finished the proof that the opposite category is in fact a category. Now,
|
||||||
to prove that that opposite-of is an involution we must show:
|
to prove that that opposite-of is an involution we must show:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\prod_{\bC \tp \var{Category}} \left(\bC^{\var{Op}}\right)^{\var{Op}} \equiv \bC
|
\prod_{\bC \tp \Category} \left(\bC^{\var{Op}}\right)^{\var{Op}} \equiv \bC
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
As we've seen the laws in $\left(\bC^{\var{Op}}\right)^{\var{Op}}$ get quite
|
As we've seen the laws in $\left(\bC^{\var{Op}}\right)^{\var{Op}}$ get quite
|
||||||
|
@ -685,11 +685,11 @@ lemma:
|
||||||
Which says that if two type-families are equivalent at all points, then pairs
|
Which says that if two type-families are equivalent at all points, then pairs
|
||||||
with identical first components and these families as second components will
|
with identical first components and these families as second components will
|
||||||
also be equivalent. For our purposes $P \defeq \isEquiv\ A\ B$ and $Q \defeq
|
also be equivalent. For our purposes $P \defeq \isEquiv\ A\ B$ and $Q \defeq
|
||||||
\var{Isomorphism}$. So we must finally prove:
|
\Isomorphism$. So we must finally prove:
|
||||||
%
|
%
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:equivIso}
|
\label{eq:equivIso}
|
||||||
\prod_{f \tp A \to B} \left( \isEquiv\ A\ B\ f \simeq \var{Isomorphism}\ f \right)
|
\prod_{f \tp A \to B} \left( \isEquiv\ A\ B\ f \simeq \Isomorphism\ f \right)
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
First, lets prove \ref{eq:equivPropSig}: Let $propP \tp \prod_{a \tp A} \isProp (P\ a)$ and $x\;y \tp \sum_{a \tp A} P\ a$ be given. Because
|
First, lets prove \ref{eq:equivPropSig}: Let $propP \tp \prod_{a \tp A} \isProp (P\ a)$ and $x\;y \tp \sum_{a \tp A} P\ a$ be given. Because
|
||||||
|
@ -732,9 +732,9 @@ choose:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{toIso}
|
\var{toIso}
|
||||||
& \tp \isEquiv\ f \to \var{Isomorphism}\ f \\
|
& \tp \isEquiv\ f \to \Isomorphism\ f \\
|
||||||
\var{fromIso}
|
\var{fromIso}
|
||||||
& \tp \var{Isomorphism}\ f \to \isEquiv\ f
|
& \tp \Isomorphism\ f \to \isEquiv\ f
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
As mentioned in section \S\ref{sec:equiv}. These maps are not in general inverses
|
As mentioned in section \S\ref{sec:equiv}. These maps are not in general inverses
|
||||||
|
@ -748,11 +748,11 @@ For this we can use the fact that being-an-equivalence is a mere proposition.
|
||||||
For the other direction:
|
For the other direction:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\var{toIso} \comp \var{fromIso} \equiv \identity_{\var{Isomorphism}\ f}
|
\var{toIso} \comp \var{fromIso} \equiv \identity_{\Isomorphism\ f}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
We will show that $\var{Isomorphism}\ f$ is also a mere proposition. To this
|
We will show that $\Isomorphism\ f$ is also a mere proposition. To this
|
||||||
end, let $X\;Y \tp \var{Isomorphism}\ f$ be given. Name the maps $x\;y \tp B
|
end, let $X\;Y \tp \Isomorphism\ f$ be given. Name the maps $x\;y \tp B
|
||||||
\to A$ respectively. Now, the proof that $X$ and $Y$ are the same is a pair of
|
\to A$ respectively. Now, the proof that $X$ and $Y$ are the same is a pair of
|
||||||
paths: $p \tp x \equiv y$ and $\Path\ (\lambda\; i \to
|
paths: $p \tp x \equiv y$ and $\Path\ (\lambda\; i \to
|
||||||
\var{AreInverses}\ f\ (p\ i))\ \mathcal{X}\ \mathcal{Y}$ where $\mathcal{X}$
|
\var{AreInverses}\ f\ (p\ i))\ \mathcal{X}\ \mathcal{Y}$ where $\mathcal{X}$
|
||||||
|
@ -1008,7 +1008,7 @@ isomorphism, and create a path from this:
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{align}
|
\end{align}
|
||||||
%
|
%
|
||||||
Where $\widetilde{p} \defeq \var{isoToId}\ \var{iso} \tp X \equiv Y$.
|
Where $\widetilde{p} \defeq \isoToId\ \var{iso} \tp X \equiv Y$.
|
||||||
|
|
||||||
Finally we have the type:
|
Finally we have the type:
|
||||||
%
|
%
|
||||||
|
@ -1248,8 +1248,8 @@ The monoidal formulation of monads consists of the following data:
|
||||||
\label{eq:monad-monoidal-data}
|
\label{eq:monad-monoidal-data}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\EndoR & \tp \Endo ℂ \\
|
\EndoR & \tp \Endo ℂ \\
|
||||||
\var{pure} & \tp \NT{\EndoR^0}{\EndoR} \\
|
\pure & \tp \NT{\EndoR^0}{\EndoR} \\
|
||||||
\var{join} & \tp \NT{\EndoR^2}{\EndoR}
|
\join & \tp \NT{\EndoR^2}{\EndoR}
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{align}
|
\end{align}
|
||||||
%
|
%
|
||||||
|
@ -1264,10 +1264,10 @@ following laws:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:monad-monoidal-laws}
|
\label{eq:monad-monoidal-laws}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\var{join} \lll \fmap\ \var{join}
|
\join \lll \fmap\ \join
|
||||||
& ≡ \var{join} \lll \var{join}\ \fmap \\
|
& ≡ \join \lll \join\ \fmap \\
|
||||||
\var{join} \lll \var{pure}\ \fmap & ≡ \identity \\
|
\join \lll \pure\ \fmap & ≡ \identity \\
|
||||||
\var{join} \lll \fmap\ \var{pure} & ≡ \identity
|
\join \lll \fmap\ \pure & ≡ \identity
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{align}
|
\end{align}
|
||||||
%
|
%
|
||||||
|
|
|
@ -45,6 +45,7 @@
|
||||||
\newcommand{\id}{\var{id}}
|
\newcommand{\id}{\var{id}}
|
||||||
\newcommand{\isEquiv}{\var{isEquiv}}
|
\newcommand{\isEquiv}{\var{isEquiv}}
|
||||||
\newcommand{\idToIso}{\var{idToIso}}
|
\newcommand{\idToIso}{\var{idToIso}}
|
||||||
|
\newcommand{\idIso}{\var{idIso}}
|
||||||
\newcommand{\isSet}{\var{isSet}}
|
\newcommand{\isSet}{\var{isSet}}
|
||||||
\newcommand{\isContr}{\var{isContr}}
|
\newcommand{\isContr}{\var{isContr}}
|
||||||
\newcommand{\isGroupoid}{\var{isGroupoid}}
|
\newcommand{\isGroupoid}{\var{isGroupoid}}
|
||||||
|
|
Loading…
Reference in a new issue