diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index 97afcd4..31d6926 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -129,7 +129,7 @@ module _ (ℓ : Level) where univ≃ = step2 ⊙ univalence ⊙ step0 univalent : Univalent - univalent = from[Andrea] (λ _ _ → univ≃) + univalent = univalenceFrom≃ univ≃ SetsIsCategory : IsCategory SetsRaw IsCategory.isPreCategory SetsIsCategory = isPreCat diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index aa77c28..3cc5068 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -130,25 +130,23 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where -- A perhaps more readable version of univalence: Univalent≃ = {A B : Object} → (A ≡ B) ≃ (A ≅ B) - -- | Equivalent formulation of univalence. - Univalent[Contr] : Set _ - Univalent[Contr] = ∀ A → isContr (Σ[ X ∈ Object ] A ≅ X) + private + -- | Equivalent formulation of univalence. + Univalent[Contr] : Set _ + Univalent[Contr] = ∀ A → isContr (Σ[ X ∈ Object ] A ≅ X) - Univalent[Andrea] : Set _ - Univalent[Andrea] = ∀ A B → (A ≡ B) ≃ (A ≅ B) + -- From: Thierry Coquand + -- Date: Wed, Mar 21, 2018 at 3:12 PM + -- + -- This is not so straight-forward so you can assume it + postulate from[Contr] : Univalent[Contr] → Univalent - -- From: Thierry Coquand - -- Date: Wed, Mar 21, 2018 at 3:12 PM - -- - -- This is not so straight-forward so you can assume it - postulate from[Contr] : Univalent[Contr] → Univalent - - from[Andrea] : Univalent[Andrea] → Univalent - from[Andrea] = from[Contr] ∘ step + univalenceFrom≃ : Univalent≃ → Univalent + univalenceFrom≃ = from[Contr] ∘ step where - module _ (f : Univalent[Andrea]) (A : Object) where + module _ (f : Univalent≃) (A : Object) where lem : Σ Object (A ≡_) ≃ Σ Object (A ≅_) - lem = equivSig (f A) + lem = equivSig λ _ → f aux : isContr (Σ Object (A ≡_)) aux = (A , refl) , (λ y → contrSingl (snd y)) diff --git a/src/Cat/Category/Product.agda b/src/Cat/Category/Product.agda index e08d7c9..0a2ed8b 100644 --- a/src/Cat/Category/Product.agda +++ b/src/Cat/Category/Product.agda @@ -171,7 +171,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} open IsPreCategory isPreCat - module _ (𝕏 𝕐 : Object) where + module _ {𝕏 𝕐 : Object} where open Σ 𝕏 renaming (fst to X ; snd to x) open Σ x renaming (fst to xa ; snd to xb) open Σ 𝕐 renaming (fst to Y ; snd to y) @@ -286,7 +286,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} equiv1 = _ , fromIso _ _ (snd iso) univalent : Univalent - univalent = from[Andrea] equiv1 + univalent = univalenceFrom≃ equiv1 isCat : IsCategory raw IsCategory.isPreCategory isCat = isPreCat