Expand definition of isDistributive
somewhat
Also contains some side-tracks
This commit is contained in:
parent
e7abab0e4c
commit
9d09363f78
|
@ -41,6 +41,8 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
|||
codomain : { a b : Object } → Arrow a b → Object
|
||||
codomain {b = b} _ = b
|
||||
|
||||
-- TODO: It seems counter-intuitive that the normal-form is on the
|
||||
-- right-hand-side.
|
||||
IsAssociative : Set (ℓa ⊔ ℓb)
|
||||
IsAssociative = ∀ {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
|
||||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
|
|
|
@ -21,10 +21,11 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
open NaturalTransformation ℂ ℂ
|
||||
record RawMonad : Set ℓ where
|
||||
field
|
||||
-- R ~ m
|
||||
R : Functor ℂ ℂ
|
||||
-- pure
|
||||
-- η ~ pure
|
||||
ηNat : NaturalTransformation F.identity R
|
||||
-- (>=>)
|
||||
-- μ ~ join
|
||||
μNat : NaturalTransformation F[ R ∘ R ] R
|
||||
|
||||
η : Transformation F.identity R
|
||||
|
@ -59,6 +60,33 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
raw : RawMonad
|
||||
isMonad : IsMonad raw
|
||||
open IsMonad isMonad public
|
||||
module R = Functor R
|
||||
module RR = Functor F[ R ∘ R ]
|
||||
module _ {X Y Z : _} {g : ℂ [ Y , R.func* Z ]} {f : ℂ [ X , R.func* Y ]} where
|
||||
lem : μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡ μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f)
|
||||
lem = begin
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ∎
|
||||
where
|
||||
open Category ℂ using () renaming (isAssociative to c-assoc)
|
||||
μN : Natural F[ R ∘ R ] R μ
|
||||
-- μN : (f : ℂ [ Y , R.func* Z ]) → μ (R.func* Z) ∘ RR.func→ f ≡ R.func→ f ∘ μ Y
|
||||
μN = proj₂ μNat
|
||||
μg : μ (R.func* Z) ∘ RR.func→ g ≡ R.func→ g ∘ μ Y
|
||||
μg = μN g
|
||||
μf : μ (R.func* Y) ∘ RR.func→ f ≡ R.func→ f ∘ μ X
|
||||
μf = μN f
|
||||
ηN : Natural F.identity R η
|
||||
ηN = proj₂ ηNat
|
||||
ηg : η (R.func* Z) ∘ g ≡ R.func→ g ∘ η Y
|
||||
ηg = ηN g
|
||||
-- Alternate route:
|
||||
res = begin
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ c-assoc ⟩
|
||||
μ Z ∘ R.func→ g ∘ μ Y ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ (R.func→ g ∘ μ Y) ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ (μ (R.func* Z) ∘ RR.func→ g) ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ∎
|
||||
|
||||
-- "A monad in the Kleisli form" [voe]
|
||||
module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
|
@ -93,12 +121,32 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
_>=>_ : {A B C : Object} → ℂ [ A , RR B ] → ℂ [ B , RR C ] → ℂ [ A , RR C ]
|
||||
f >=> g = ℂ [ rr g ∘ f ]
|
||||
|
||||
-- fmap id ≡ id
|
||||
IsIdentity = {X : Object}
|
||||
→ rr ζ ≡ 𝟙 {RR X}
|
||||
IsNatural = {X Y : Object} (f : ℂ [ X , RR Y ])
|
||||
→ (ℂ [ rr f ∘ ζ ]) ≡ f
|
||||
→ rr f ∘ ζ ≡ f
|
||||
IsDistributive = {X Y Z : Object} (g : ℂ [ Y , RR Z ]) (f : ℂ [ X , RR Y ])
|
||||
→ ℂ [ rr g ∘ rr f ] ≡ rr (ℂ [ rr g ∘ f ])
|
||||
→ rr g ∘ rr f ≡ rr (rr g ∘ f)
|
||||
-- I assume `Fusion` is admissable - it certainly looks more like the
|
||||
-- distributive law for monads I know from Haskell.
|
||||
Fusion = {X Y Z : Object} (g : ℂ [ Y , Z ]) (f : ℂ [ X , Y ])
|
||||
→ rr (ζ ∘ g ∘ f) ≡ rr (ζ ∘ g) ∘ rr (ζ ∘ f)
|
||||
-- NatDist2Fus : IsNatural → IsDistributive → Fusion
|
||||
-- NatDist2Fus isNatural isDistributive g f =
|
||||
-- let
|
||||
-- ζf = ζ ∘ f
|
||||
-- ζg = ζ ∘ g
|
||||
-- Nζf : rr (ζ ∘ f) ∘ ζ ≡ ζ ∘ f
|
||||
-- Nζf = isNatural ζf
|
||||
-- Nζg : rr (ζ ∘ g) ∘ ζ ≡ ζ ∘ g
|
||||
-- Nζg = isNatural ζg
|
||||
-- ζgf = ζ ∘ g ∘ f
|
||||
-- Nζgf : rr (ζ ∘ g ∘ f) ∘ ζ ≡ ζ ∘ g ∘ f
|
||||
-- Nζgf = isNatural ζgf
|
||||
-- res : rr (ζ ∘ g ∘ f) ≡ rr (ζ ∘ g) ∘ rr (ζ ∘ f)
|
||||
-- res = {!!}
|
||||
-- in res
|
||||
|
||||
record IsMonad (raw : RawMonad) : Set ℓ where
|
||||
open RawMonad raw public
|
||||
|
@ -130,9 +178,6 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
RR : Object → Object
|
||||
RR = func* R
|
||||
|
||||
R→ : {A B : Object} → ℂ [ A , B ] → ℂ [ RR A , RR B ]
|
||||
R→ = func→ R
|
||||
|
||||
ζ : {X : Object} → ℂ [ X , RR X ]
|
||||
ζ {X} = η X
|
||||
|
||||
|
@ -168,13 +213,17 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
𝟙 ∘ f ≡⟨ proj₂ ℂ.isIdentity ⟩
|
||||
f ∎
|
||||
where
|
||||
module ℂ = Category ℂ
|
||||
open NaturalTransformation
|
||||
module ℂ = Category ℂ
|
||||
ηN : Natural ℂ ℂ F.identity R η
|
||||
ηN = proj₂ ηNat
|
||||
|
||||
isDistributive : IsDistributive
|
||||
isDistributive = {!!}
|
||||
isDistributive {X} {Y} {Z} g f = begin
|
||||
rr g ∘ rr f ≡⟨⟩
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨⟩
|
||||
μ Z ∘ R.func→ (rr g ∘ f) ∎
|
||||
|
||||
forthIsMonad : K.IsMonad (forthRaw raw)
|
||||
Kis.isIdentity forthIsMonad = isIdentity
|
||||
|
@ -189,7 +238,7 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
back = {!!}
|
||||
|
||||
fortheq : (m : K.Monad) → forth (back m) ≡ m
|
||||
fortheq = {!!}
|
||||
fortheq m = {!!}
|
||||
|
||||
backeq : (m : M.Monad) → back (forth m) ≡ m
|
||||
backeq = {!!}
|
||||
|
|
Loading…
Reference in a new issue