Update Fun
according to new naming policy
This commit is contained in:
parent
57d7eab4cb
commit
9e96e704e8
|
@ -21,7 +21,7 @@ open import Cat.Equality
|
||||||
open Equality.Data.Product
|
open Equality.Data.Product
|
||||||
|
|
||||||
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
||||||
open Category hiding ( _∘_ ; Arrow )
|
open Category using (Object ; 𝟙)
|
||||||
open Functor
|
open Functor
|
||||||
|
|
||||||
module _ (F G : Functor ℂ 𝔻) where
|
module _ (F G : Functor ℂ 𝔻) where
|
||||||
|
@ -70,7 +70,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
where
|
where
|
||||||
module F = Functor F
|
module F = Functor F
|
||||||
F→ = F.func→
|
F→ = F.func→
|
||||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
module 𝔻 = Category 𝔻
|
||||||
|
|
||||||
identityNat : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
identityNat : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
||||||
identityNat F = identityTrans F , identityNatural F
|
identityNat F = identityTrans F , identityNatural F
|
||||||
|
@ -95,13 +95,13 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
||||||
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
||||||
where
|
where
|
||||||
open IsCategory (isCategory 𝔻)
|
open Category 𝔻
|
||||||
|
|
||||||
NatComp = _:⊕:_
|
NatComp = _:⊕:_
|
||||||
|
|
||||||
private
|
private
|
||||||
module _ {F G : Functor ℂ 𝔻} where
|
module _ {F G : Functor ℂ 𝔻} where
|
||||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
module 𝔻 = Category 𝔻
|
||||||
|
|
||||||
transformationIsSet : isSet (Transformation F G)
|
transformationIsSet : isSet (Transformation F G)
|
||||||
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l → p l C) (λ l → q l C) i j
|
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l → p l C) (λ l → q l C) i j
|
||||||
|
@ -139,7 +139,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
||||||
L R (funExt (λ x → assoc))
|
L R (funExt (λ x → assoc))
|
||||||
where
|
where
|
||||||
open IsCategory (isCategory 𝔻)
|
open Category 𝔻
|
||||||
|
|
||||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||||
private
|
private
|
||||||
|
@ -181,7 +181,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
}
|
}
|
||||||
|
|
||||||
Fun : Category (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') (ℓc ⊔ ℓc' ⊔ ℓd')
|
Fun : Category (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') (ℓc ⊔ ℓc' ⊔ ℓd')
|
||||||
raw Fun = RawFun
|
Category.raw Fun = RawFun
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
open import Cat.Categories.Sets
|
open import Cat.Categories.Sets
|
||||||
|
|
|
@ -14,7 +14,6 @@ open Equality.Data.Product
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object ℂ } {X : Category.Object ℂ} (f : Category.Arrow ℂ A B) where
|
module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object ℂ } {X : Category.Object ℂ} (f : Category.Arrow ℂ A B) where
|
||||||
open Category ℂ
|
open Category ℂ
|
||||||
open IsCategory (isCategory)
|
|
||||||
|
|
||||||
iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
||||||
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||||
|
|
Loading…
Reference in a new issue