Update Fun
according to new naming policy
This commit is contained in:
parent
57d7eab4cb
commit
9e96e704e8
|
@ -21,7 +21,7 @@ open import Cat.Equality
|
|||
open Equality.Data.Product
|
||||
|
||||
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
||||
open Category hiding ( _∘_ ; Arrow )
|
||||
open Category using (Object ; 𝟙)
|
||||
open Functor
|
||||
|
||||
module _ (F G : Functor ℂ 𝔻) where
|
||||
|
@ -70,7 +70,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
where
|
||||
module F = Functor F
|
||||
F→ = F.func→
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
module 𝔻 = Category 𝔻
|
||||
|
||||
identityNat : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
||||
identityNat F = identityTrans F , identityNatural F
|
||||
|
@ -95,13 +95,13 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
||||
𝔻 [ H.func→ f ∘ (θ ∘nt η) A ] ∎
|
||||
where
|
||||
open IsCategory (isCategory 𝔻)
|
||||
open Category 𝔻
|
||||
|
||||
NatComp = _:⊕:_
|
||||
|
||||
private
|
||||
module _ {F G : Functor ℂ 𝔻} where
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
module 𝔻 = Category 𝔻
|
||||
|
||||
transformationIsSet : isSet (Transformation F G)
|
||||
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l → p l C) (λ l → q l C) i j
|
||||
|
@ -139,7 +139,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
||||
L R (funExt (λ x → assoc))
|
||||
where
|
||||
open IsCategory (isCategory 𝔻)
|
||||
open Category 𝔻
|
||||
|
||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||
private
|
||||
|
@ -181,7 +181,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
}
|
||||
|
||||
Fun : Category (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') (ℓc ⊔ ℓc' ⊔ ℓd')
|
||||
raw Fun = RawFun
|
||||
Category.raw Fun = RawFun
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
open import Cat.Categories.Sets
|
||||
|
|
|
@ -14,7 +14,6 @@ open Equality.Data.Product
|
|||
|
||||
module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : Category.Object ℂ } {X : Category.Object ℂ} (f : Category.Arrow ℂ A B) where
|
||||
open Category ℂ
|
||||
open IsCategory (isCategory)
|
||||
|
||||
iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
||||
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||
|
|
Loading…
Reference in a new issue