Universally quantify test object in epi- mono- morphism

Closes #26
This commit is contained in:
Frederik Hanghøj Iversen 2018-07-17 17:02:39 +02:00
parent 188bba6c8d
commit 9ee05e1a36

View file

@ -84,11 +84,11 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
_≊_ A B = Σ[ f Arrow A B ] (Isomorphism f) _≊_ A B = Σ[ f Arrow A B ] (Isomorphism f)
module _ {A B : Object} where module _ {A B : Object} where
Epimorphism : {X : Object } (f : Arrow A B) Set b Epimorphism : (f : Arrow A B) Set _
Epimorphism {X} f = (g₀ g₁ : Arrow B X) g₀ <<< f g₁ <<< f g₀ g₁ Epimorphism f = {X} (g₀ g₁ : Arrow B X) g₀ <<< f g₁ <<< f g₀ g₁
Monomorphism : {X : Object} (f : Arrow A B) Set b Monomorphism : (f : Arrow A B) Set _
Monomorphism {X} f = (g₀ g₁ : Arrow X A) f <<< g₀ f <<< g₁ g₀ g₁ Monomorphism f = {X} (g₀ g₁ : Arrow X A) f <<< g₀ f <<< g₁ g₀ g₁
IsInitial : Object Set (a b) IsInitial : Object Set (a b)
IsInitial I = {X : Object} isContr (Arrow I X) IsInitial I = {X : Object} isContr (Arrow I X)
@ -175,7 +175,7 @@ module _ {a b : Level} ( : RawCategory a b) where
-- | Relation between iso- epi- and mono- morphisms. -- | Relation between iso- epi- and mono- morphisms.
module _ {A B : Object} {X : Object} (f : Arrow A B) where module _ {A B : Object} {X : Object} (f : Arrow A B) where
iso→epi : Isomorphism f Epimorphism {X = X} f iso→epi : Isomorphism f Epimorphism f
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
g₀ ≡⟨ sym rightIdentity g₀ ≡⟨ sym rightIdentity
g₀ <<< identity ≡⟨ cong (_<<<_ g₀) (sym right-inv) g₀ <<< identity ≡⟨ cong (_<<<_ g₀) (sym right-inv)
@ -186,7 +186,7 @@ module _ {a b : Level} ( : RawCategory a b) where
g₁ <<< identity ≡⟨ rightIdentity g₁ <<< identity ≡⟨ rightIdentity
g₁ g₁
iso→mono : Isomorphism f Monomorphism {X = X} f iso→mono : Isomorphism f Monomorphism f
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq = iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
begin begin
g₀ ≡⟨ sym leftIdentity g₀ ≡⟨ sym leftIdentity
@ -198,7 +198,7 @@ module _ {a b : Level} ( : RawCategory a b) where
identity <<< g₁ ≡⟨ leftIdentity identity <<< g₁ ≡⟨ leftIdentity
g₁ g₁
iso→epi×mono : Isomorphism f Epimorphism {X = X} f × Monomorphism {X = X} f iso→epi×mono : Isomorphism f Epimorphism f × Monomorphism f
iso→epi×mono iso = iso→epi iso , iso→mono iso iso→epi×mono iso = iso→epi iso , iso→mono iso
propIsAssociative : isProp IsAssociative propIsAssociative : isProp IsAssociative