parent
188bba6c8d
commit
9ee05e1a36
|
@ -84,11 +84,11 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
_≊_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
_≊_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
||||||
|
|
||||||
module _ {A B : Object} where
|
module _ {A B : Object} where
|
||||||
Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb
|
Epimorphism : (f : Arrow A B) → Set _
|
||||||
Epimorphism {X} f = (g₀ g₁ : Arrow B X) → g₀ <<< f ≡ g₁ <<< f → g₀ ≡ g₁
|
Epimorphism f = ∀ {X} → (g₀ g₁ : Arrow B X) → g₀ <<< f ≡ g₁ <<< f → g₀ ≡ g₁
|
||||||
|
|
||||||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
Monomorphism : (f : Arrow A B) → Set _
|
||||||
Monomorphism {X} f = (g₀ g₁ : Arrow X A) → f <<< g₀ ≡ f <<< g₁ → g₀ ≡ g₁
|
Monomorphism f = ∀ {X} → (g₀ g₁ : Arrow X A) → f <<< g₀ ≡ f <<< g₁ → g₀ ≡ g₁
|
||||||
|
|
||||||
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||||||
IsInitial I = {X : Object} → isContr (Arrow I X)
|
IsInitial I = {X : Object} → isContr (Arrow I X)
|
||||||
|
@ -175,7 +175,7 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
|
|
||||||
-- | Relation between iso- epi- and mono- morphisms.
|
-- | Relation between iso- epi- and mono- morphisms.
|
||||||
module _ {A B : Object} {X : Object} (f : Arrow A B) where
|
module _ {A B : Object} {X : Object} (f : Arrow A B) where
|
||||||
iso→epi : Isomorphism f → Epimorphism {X = X} f
|
iso→epi : Isomorphism f → Epimorphism f
|
||||||
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||||
g₀ ≡⟨ sym rightIdentity ⟩
|
g₀ ≡⟨ sym rightIdentity ⟩
|
||||||
g₀ <<< identity ≡⟨ cong (_<<<_ g₀) (sym right-inv) ⟩
|
g₀ <<< identity ≡⟨ cong (_<<<_ g₀) (sym right-inv) ⟩
|
||||||
|
@ -186,7 +186,7 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
g₁ <<< identity ≡⟨ rightIdentity ⟩
|
g₁ <<< identity ≡⟨ rightIdentity ⟩
|
||||||
g₁ ∎
|
g₁ ∎
|
||||||
|
|
||||||
iso→mono : Isomorphism f → Monomorphism {X = X} f
|
iso→mono : Isomorphism f → Monomorphism f
|
||||||
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
|
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
|
||||||
begin
|
begin
|
||||||
g₀ ≡⟨ sym leftIdentity ⟩
|
g₀ ≡⟨ sym leftIdentity ⟩
|
||||||
|
@ -198,7 +198,7 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
identity <<< g₁ ≡⟨ leftIdentity ⟩
|
identity <<< g₁ ≡⟨ leftIdentity ⟩
|
||||||
g₁ ∎
|
g₁ ∎
|
||||||
|
|
||||||
iso→epi×mono : Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
iso→epi×mono : Isomorphism f → Epimorphism f × Monomorphism f
|
||||||
iso→epi×mono iso = iso→epi iso , iso→mono iso
|
iso→epi×mono iso = iso→epi iso , iso→mono iso
|
||||||
|
|
||||||
propIsAssociative : isProp IsAssociative
|
propIsAssociative : isProp IsAssociative
|
||||||
|
|
Loading…
Reference in a new issue