diff --git a/src/Cat/Category/Monad/Kleisli.agda b/src/Cat/Category/Monad/Kleisli.agda index e0ebf86..366886b 100644 --- a/src/Cat/Category/Monad/Kleisli.agda +++ b/src/Cat/Category/Monad/Kleisli.agda @@ -230,6 +230,7 @@ record IsMonad (raw : RawMonad) : Set ℓ where m ∎ record Monad : Set ℓ where + no-eta-equality field raw : RawMonad isMonad : IsMonad raw diff --git a/src/Cat/Category/Monad/Monoidal.agda b/src/Cat/Category/Monad/Monoidal.agda index f5b20ad..11f1dbc 100644 --- a/src/Cat/Category/Monad/Monoidal.agda +++ b/src/Cat/Category/Monad/Monoidal.agda @@ -123,6 +123,7 @@ record IsMonad (raw : RawMonad) : Set ℓ where ∎ record Monad : Set ℓ where + no-eta-equality field raw : RawMonad isMonad : IsMonad raw diff --git a/src/Cat/Category/Monad/Voevodsky.agda b/src/Cat/Category/Monad/Voevodsky.agda index 0ad3d90..0d38567 100644 --- a/src/Cat/Category/Monad/Voevodsky.agda +++ b/src/Cat/Category/Monad/Voevodsky.agda @@ -25,6 +25,7 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where module §2-3 (omap : Object → Object) (pure : {X : Object} → Arrow X (omap X)) where record §1 : Set ℓ where + no-eta-equality open M field @@ -75,12 +76,11 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where isMonad : IsMonad rawMnd toMonad : Monad - toMonad = record - { raw = rawMnd - ; isMonad = isMonad - } + toMonad .Monad.raw = rawMnd + toMonad .Monad.isMonad = isMonad record §2 : Set ℓ where + no-eta-equality open K field @@ -97,28 +97,24 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where isMonad : IsMonad rawMnd toMonad : Monad - toMonad = record - { raw = rawMnd - ; isMonad = isMonad - } + toMonad .Monad.raw = rawMnd + toMonad .Monad.isMonad = isMonad - §1-fromMonad : (m : M.Monad) → §2-3.§1 (M.Monad.Romap m) (λ {X} → M.Monad.pureT m X) - §1-fromMonad m = record - { fmap = Functor.fmap R - ; RisFunctor = Functor.isFunctor R - ; pureN = pureN - ; join = λ {X} → joinT X - ; joinN = joinN - ; isMonad = M.Monad.isMonad m - } - where + module _ (m : M.Monad) where open M.Monad m + §1-fromMonad : §2-3.§1 (M.Monad.Romap m) (λ {X} → M.Monad.pureT m X) + §1-fromMonad .§2-3.§1.fmap = Functor.fmap R + §1-fromMonad .§2-3.§1.RisFunctor = Functor.isFunctor R + §1-fromMonad .§2-3.§1.pureN = pureN + §1-fromMonad .§2-3.§1.join {X} = joinT X + §1-fromMonad .§2-3.§1.joinN = joinN + §1-fromMonad .§2-3.§1.isMonad = M.Monad.isMonad m + + §2-fromMonad : (m : K.Monad) → §2-3.§2 (K.Monad.omap m) (K.Monad.pure m) - §2-fromMonad m = record - { bind = K.Monad.bind m - ; isMonad = K.Monad.isMonad m - } + §2-fromMonad m .§2-3.§2.bind = K.Monad.bind m + §2-fromMonad m .§2-3.§2.isMonad = K.Monad.isMonad m -- | In the following we seek to transform the equivalence `Monoidal≃Kleisli` -- | to talk about voevodsky's construction. @@ -145,65 +141,43 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where back = §1-fromMonad ∘ Kleisli→Monoidal ∘ §2-3.§2.toMonad forthEq : ∀ m → (forth ∘ back) m ≡ m - forthEq m = begin - (forth ∘ back) m ≡⟨⟩ - -- In full gory detail: - ( §2-fromMonad - ∘ Monoidal→Kleisli - ∘ §2-3.§1.toMonad - ∘ §1-fromMonad - ∘ Kleisli→Monoidal - ∘ §2-3.§2.toMonad - ) m ≡⟨⟩ -- fromMonad and toMonad are inverses - ( §2-fromMonad - ∘ Monoidal→Kleisli - ∘ Kleisli→Monoidal - ∘ §2-3.§2.toMonad - ) m ≡⟨ cong (λ φ → φ m) t ⟩ - -- Monoidal→Kleisli and Kleisli→Monoidal are inverses - -- I should be able to prove this using congruence and `lem` below. - ( §2-fromMonad - ∘ §2-3.§2.toMonad - ) m ≡⟨⟩ - ( §2-fromMonad - ∘ §2-3.§2.toMonad - ) m ≡⟨⟩ -- fromMonad and toMonad are inverses - m ∎ + forthEq m = trans + (trans (cong-d (§2-fromMonad ∘ Monoidal→Kleisli) (lemmaz (Kleisli→Monoidal (§2-3.§2.toMonad m)))) + (cong-d (\ φ → §2-fromMonad (φ (§2-3.§2.toMonad m))) re-ve)) + lemma where - t' : ((Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure}) - ≡ §2-3.§2.toMonad - t' = cong (\ φ → φ ∘ §2-3.§2.toMonad) re-ve - t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure}) - ≡ (§2-fromMonad ∘ §2-3.§2.toMonad) - t = cong-d (\ f → §2-fromMonad ∘ f) t' - u : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad) m - ≡ (§2-fromMonad ∘ §2-3.§2.toMonad) m - u = cong (\ φ → φ m) t + lemma : (§2-fromMonad ∘ §2-3.§2.toMonad) m ≡ m + §2-3.§2.bind (lemma i) = §2-3.§2.bind m + §2-3.§2.isMonad (lemma i) = §2-3.§2.isMonad m + lemmaz : ∀ m → §2-3.§1.toMonad (§1-fromMonad m) ≡ m + M.Monad.raw (lemmaz m i) = M.Monad.raw m + M.Monad.isMonad (lemmaz m i) = M.Monad.isMonad m backEq : ∀ m → (back ∘ forth) m ≡ m - backEq m = begin - (back ∘ forth) m ≡⟨⟩ - ( §1-fromMonad - ∘ Kleisli→Monoidal - ∘ §2-3.§2.toMonad - ∘ §2-fromMonad - ∘ Monoidal→Kleisli - ∘ §2-3.§1.toMonad - ) m ≡⟨⟩ -- fromMonad and toMonad are inverses - ( §1-fromMonad - ∘ Kleisli→Monoidal - ∘ Monoidal→Kleisli - ∘ §2-3.§1.toMonad - ) m ≡⟨ cong (λ φ → φ m) t ⟩ -- Monoidal→Kleisli and Kleisli→Monoidal are inverses - ( §1-fromMonad - ∘ §2-3.§1.toMonad - ) m ≡⟨⟩ -- fromMonad and toMonad are inverses - m ∎ - where - t : §1-fromMonad ∘ Kleisli→Monoidal ∘ Monoidal→Kleisli ∘ §2-3.§1.toMonad - ≡ §1-fromMonad ∘ §2-3.§1.toMonad - -- Why does `re-ve` not satisfy this goal? - t i m = §1-fromMonad (ve-re i (§2-3.§1.toMonad m)) + backEq m = trans (cong-d (§1-fromMonad ∘ Kleisli→Monoidal) (lemma (Monoidal→Kleisli (§2-3.§1.toMonad m)))) + (trans (cong-d (\ φ → §1-fromMonad (φ (§2-3.§1.toMonad m))) ve-re) + lemmaz) + where + -- rhs = §1-fromMonad (Kleisli→Monoidal ((Monoidal→Kleisli (§2-3.§1.toMonad m)))) + -- foo : §1-fromMonad (Kleisli→Monoidal (§2-3.§2.toMonad (§2-fromMonad (Monoidal→Kleisli (§2-3.§1.toMonad m))))) + -- ≡ §1-fromMonad (Kleisli→Monoidal ((Monoidal→Kleisli (§2-3.§1.toMonad m)))) + -- §2-3.§1.fmap (foo i) = §2-3.§1.fmap rhs + -- §2-3.§1.join (foo i) = §2-3.§1.join rhs + -- §2-3.§1.RisFunctor (foo i) = §2-3.§1.RisFunctor rhs + -- §2-3.§1.pureN (foo i) = §2-3.§1.pureN rhs + -- §2-3.§1.joinN (foo i) = §2-3.§1.joinN rhs + -- §2-3.§1.isMonad (foo i) = §2-3.§1.isMonad rhs + + lemmaz : §1-fromMonad (§2-3.§1.toMonad m) ≡ m + §2-3.§1.fmap (lemmaz i) = §2-3.§1.fmap m + §2-3.§1.join (lemmaz i) = §2-3.§1.join m + §2-3.§1.RisFunctor (lemmaz i) = §2-3.§1.RisFunctor m + §2-3.§1.pureN (lemmaz i) = §2-3.§1.pureN m + §2-3.§1.joinN (lemmaz i) = §2-3.§1.joinN m + §2-3.§1.isMonad (lemmaz i) = §2-3.§1.isMonad m + lemma : ∀ m → §2-3.§2.toMonad (§2-fromMonad m) ≡ m + K.Monad.raw (lemma m i) = K.Monad.raw m + K.Monad.isMonad (lemma m i) = K.Monad.isMonad m voe-isEquiv : isEquiv (§2-3.§1 omap pure) (§2-3.§2 omap pure) forth voe-isEquiv = gradLemma forth back forthEq backEq