Succesfully apply path-induction.

Now all that's left to do is prove the original proposition in a
heterogenous equality
This commit is contained in:
Frederik Hanghøj Iversen 2018-02-20 17:44:44 +01:00
parent ff496aae09
commit a016c67b88

View file

@ -147,7 +147,7 @@ module _ {a} {b} { : RawCategory a b} where
ident : (λ _ IsIdentity 𝟙) [ X.ident Y.ident ]
ident = X.propIsIdentity X.ident Y.ident
-- A version of univalence indexed by the identity proof.
-- Not of course that since it's defined where `RawCategory ` has been opened
-- Note of course that since it's defined where `RawCategory ` has been opened
-- this is specialized to that category.
Univ : IsIdentity 𝟙 Set _
Univ idnt = {A B : Y.Raw.Object}
@ -156,8 +156,15 @@ module _ {a} {b} { : RawCategory a b} where
done : x y
U : {a : IsIdentity 𝟙} (λ _ IsIdentity 𝟙) [ X.ident a ] (b : Univ a) Set _
U eqwal bbb = (λ i Univ (eqwal i)) [ X.univalent bbb ]
P : (y : IsIdentity 𝟙)
(λ _ IsIdentity 𝟙) [ X.ident y ] Set _
P y eq = (b' : Univ y) U eq b'
helper : (b' : Univ X.ident)
(λ _ Univ X.ident) [ X.univalent b' ]
helper univ = {!!}
foo = pathJ P helper Y.ident ident
eqUni : U ident Y.univalent
eqUni = {!!}
eqUni = foo Y.univalent
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
IC.ident (done i) = ident i
IC.arrowIsSet (done i) = X.propArrowIsSet X.arrowIsSet Y.arrowIsSet i