Succesfully apply path-induction.
Now all that's left to do is prove the original proposition in a heterogenous equality
This commit is contained in:
parent
ff496aae09
commit
a016c67b88
|
@ -147,7 +147,7 @@ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
||||||
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
||||||
ident = X.propIsIdentity X.ident Y.ident
|
ident = X.propIsIdentity X.ident Y.ident
|
||||||
-- A version of univalence indexed by the identity proof.
|
-- A version of univalence indexed by the identity proof.
|
||||||
-- Not of course that since it's defined where `RawCategory ℂ` has been opened
|
-- Note of course that since it's defined where `RawCategory ℂ` has been opened
|
||||||
-- this is specialized to that category.
|
-- this is specialized to that category.
|
||||||
Univ : IsIdentity 𝟙 → Set _
|
Univ : IsIdentity 𝟙 → Set _
|
||||||
Univ idnt = {A B : Y.Raw.Object} →
|
Univ idnt = {A B : Y.Raw.Object} →
|
||||||
|
@ -156,8 +156,15 @@ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
||||||
done : x ≡ y
|
done : x ≡ y
|
||||||
U : ∀ {a : IsIdentity 𝟙} → (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ] → (b : Univ a) → Set _
|
U : ∀ {a : IsIdentity 𝟙} → (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ] → (b : Univ a) → Set _
|
||||||
U eqwal bbb = (λ i → Univ (eqwal i)) [ X.univalent ≡ bbb ]
|
U eqwal bbb = (λ i → Univ (eqwal i)) [ X.univalent ≡ bbb ]
|
||||||
|
P : (y : IsIdentity 𝟙)
|
||||||
|
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ y ] → Set _
|
||||||
|
P y eq = ∀ (b' : Univ y) → U eq b'
|
||||||
|
helper : ∀ (b' : Univ X.ident)
|
||||||
|
→ (λ _ → Univ X.ident) [ X.univalent ≡ b' ]
|
||||||
|
helper univ = {!!}
|
||||||
|
foo = pathJ P helper Y.ident ident
|
||||||
eqUni : U ident Y.univalent
|
eqUni : U ident Y.univalent
|
||||||
eqUni = {!!}
|
eqUni = foo Y.univalent
|
||||||
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
|
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
|
||||||
IC.ident (done i) = ident i
|
IC.ident (done i) = ident i
|
||||||
IC.arrowIsSet (done i) = X.propArrowIsSet X.arrowIsSet Y.arrowIsSet i
|
IC.arrowIsSet (done i) = X.propArrowIsSet X.arrowIsSet Y.arrowIsSet i
|
||||||
|
|
Loading…
Reference in a new issue