Documentation in Monad
This commit is contained in:
parent
67993be27b
commit
a0944d69b1
|
@ -70,34 +70,49 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
ℓ = ℓa ⊔ ℓb
|
||||
|
||||
open Category ℂ using (Arrow ; 𝟙 ; Object ; _∘_ ; _>>>_)
|
||||
|
||||
-- | Data for a monad.
|
||||
--
|
||||
-- Note that (>>=) is not expressible in a general category because objects
|
||||
-- are not generally types.
|
||||
record RawMonad : Set ℓ where
|
||||
field
|
||||
RR : Object → Object
|
||||
-- Note name-change from [voe]
|
||||
pure : {X : Object} → ℂ [ X , RR X ]
|
||||
bind : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ]
|
||||
|
||||
-- | functor map
|
||||
--
|
||||
-- This should perhaps be defined in a "Klesli-version" of functors as well?
|
||||
fmap : ∀ {A B} → ℂ [ A , B ] → ℂ [ RR A , RR B ]
|
||||
fmap f = bind (pure ∘ f)
|
||||
-- Why is (>>=) not implementable? - Because in e.g. the category of sets is
|
||||
-- `m a` a set. This is not necessarily the case.
|
||||
|
||||
-- | Composition of monads aka. the kleisli-arrow.
|
||||
_>=>_ : {A B C : Object} → ℂ [ A , RR B ] → ℂ [ B , RR C ] → ℂ [ A , RR C ]
|
||||
f >=> g = f >>> (bind g)
|
||||
-- _>>=_ : {A B C : Object} {m : RR A} → ℂ [ A , RR B ] → RR C
|
||||
-- m >>= f = ?
|
||||
|
||||
-- | Flattening nested monads.
|
||||
join : {A : Object} → ℂ [ RR (RR A) , RR A ]
|
||||
join = bind 𝟙
|
||||
|
||||
-- fmap id ≡ id
|
||||
------------------
|
||||
-- * Monad laws --
|
||||
------------------
|
||||
|
||||
-- There may be better names than what I've chosen here.
|
||||
|
||||
IsIdentity = {X : Object}
|
||||
-- aka. `>>= pure ≡ 𝟙`
|
||||
→ bind pure ≡ 𝟙 {RR X}
|
||||
IsNatural = {X Y : Object} (f : ℂ [ X , RR Y ])
|
||||
-- aka. `pure >>= f ≡ f`
|
||||
→ pure >>> (bind f) ≡ f
|
||||
-- Not stricly a distributive law, since ∘ becomes >=>
|
||||
IsDistributive = {X Y Z : Object} (g : ℂ [ Y , RR Z ]) (f : ℂ [ X , RR Y ])
|
||||
-- `>>= g . >>= f ≡ >>= (>>= g . f) ≡ >>= (\x -> (f x) >>= g)`
|
||||
→ (bind f) >>> (bind g) ≡ bind (f >=> g)
|
||||
|
||||
-- | Functor map fusion.
|
||||
--
|
||||
-- This is really a functor law. Should we have a kleisli-representation of
|
||||
-- functors as well and make them a super-class?
|
||||
Fusion = {X Y Z : Object} {g : ℂ [ Y , Z ]} {f : ℂ [ X , Y ]}
|
||||
→ fmap (g ∘ f) ≡ fmap g ∘ fmap f
|
||||
|
||||
|
|
Loading…
Reference in a new issue