Stuff about the free category
This commit is contained in:
parent
9f1e82168f
commit
a27292dd53
|
@ -2,41 +2,61 @@
|
|||
module Cat.Categories.Free where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical hiding (Path)
|
||||
open import Cubical hiding (Path ; isSet ; empty)
|
||||
open import Data.Product
|
||||
|
||||
open import Cat.Category as C
|
||||
open import Cat.Category
|
||||
|
||||
open IsCategory
|
||||
open Category
|
||||
|
||||
-- data Path {ℓ : Level} {A : Set ℓ} : (a b : A) → Set ℓ where
|
||||
-- emptyPath : {a : A} → Path a a
|
||||
-- concatenate : {a b c : A} → Path a b → Path b c → Path a b
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
private
|
||||
open module ℂ = Category ℂ
|
||||
module ℂ = Category ℂ
|
||||
|
||||
postulate
|
||||
Path : (a b : ℂ.Object) → Set ℓ'
|
||||
emptyPath : (o : ℂ.Object) → Path o o
|
||||
concatenate : {a b c : ℂ.Object} → Path b c → Path a b → Path a c
|
||||
-- import Data.List
|
||||
-- P : (a b : Object ℂ) → Set (ℓ ⊔ ℓ')
|
||||
-- P = {!Data.List.List ?!}
|
||||
-- Generalized paths:
|
||||
-- data P {ℓ : Level} {A : Set ℓ} (R : A → A → Set ℓ) : (a b : A) → Set ℓ where
|
||||
-- e : {a : A} → P R a a
|
||||
-- c : {a b c : A} → R a b → P R b c → P R a c
|
||||
|
||||
-- Path's are like lists with directions.
|
||||
-- This implementation is specialized to categories.
|
||||
data Path : (a b : Object ℂ) → Set (ℓ ⊔ ℓ') where
|
||||
empty : {A : Object ℂ} → Path A A
|
||||
cons : ∀ {A B C} → ℂ [ B , C ] → Path A B → Path A C
|
||||
|
||||
concatenate : ∀ {A B C : Object ℂ} → Path B C → Path A B → Path A C
|
||||
concatenate empty p = p
|
||||
concatenate (cons x q) p = cons x (concatenate q p)
|
||||
|
||||
private
|
||||
module _ {A B C D : ℂ.Object} {r : Path A B} {q : Path B C} {p : Path C D} where
|
||||
postulate
|
||||
p-assoc : concatenate {A} {C} {D} p (concatenate {A} {B} {C} q r)
|
||||
≡ concatenate {A} {B} {D} (concatenate {B} {C} {D} p q) r
|
||||
module _ {A B : ℂ.Object} {p : Path A B} where
|
||||
postulate
|
||||
ident-r : concatenate {A} {A} {B} p (emptyPath A) ≡ p
|
||||
ident-l : concatenate {A} {B} {B} (emptyPath B) p ≡ p
|
||||
|
||||
RawFree : RawCategory ℓ ℓ'
|
||||
module _ {A B C D : Object ℂ} where
|
||||
p-assoc : {r : Path A B} {q : Path B C} {p : Path C D} → concatenate p (concatenate q r) ≡ concatenate (concatenate p q) r
|
||||
p-assoc {r} {q} {p} = {!!}
|
||||
module _ {A B : Object ℂ} {p : Path A B} where
|
||||
-- postulate
|
||||
-- ident-r : concatenate {A} {A} {B} p (lift 𝟙) ≡ p
|
||||
-- ident-l : concatenate {A} {B} {B} (lift 𝟙) p ≡ p
|
||||
module _ {A B : Object ℂ} where
|
||||
isSet : IsSet (Path A B)
|
||||
isSet = {!!}
|
||||
RawFree : RawCategory ℓ (ℓ ⊔ ℓ')
|
||||
RawFree = record
|
||||
{ Object = ℂ.Object
|
||||
{ Object = Object ℂ
|
||||
; Arrow = Path
|
||||
; 𝟙 = λ {o} → emptyPath o
|
||||
; _∘_ = λ {a b c} → concatenate {a} {b} {c}
|
||||
; 𝟙 = λ {o} → {!lift 𝟙!}
|
||||
; _∘_ = λ {a b c} → {!concatenate {a} {b} {c}!}
|
||||
}
|
||||
RawIsCategoryFree : IsCategory RawFree
|
||||
RawIsCategoryFree = record
|
||||
{ assoc = p-assoc
|
||||
; ident = ident-r , ident-l
|
||||
{ assoc = {!p-assoc!}
|
||||
; ident = {!ident-r , ident-l!}
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue