Use hLevels in Fam
This commit is contained in:
parent
3d0916f448
commit
a321a9c8b2
|
@ -3,9 +3,11 @@ module Cat.Categories.Fam where
|
||||||
|
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Data.Product
|
open import Data.Product
|
||||||
open import Cubical
|
|
||||||
import Function
|
import Function
|
||||||
|
|
||||||
|
open import Cubical
|
||||||
|
open import Cubical.Universe
|
||||||
|
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Equality
|
open import Cat.Equality
|
||||||
|
|
||||||
|
@ -13,38 +15,35 @@ open Equality.Data.Product
|
||||||
|
|
||||||
module _ (ℓa ℓb : Level) where
|
module _ (ℓa ℓb : Level) where
|
||||||
private
|
private
|
||||||
Obj' = Σ[ A ∈ Set ℓa ] (A → Set ℓb)
|
Object = Σ[ hA ∈ hSet {ℓa} ] (proj₁ hA → hSet {ℓb})
|
||||||
Arr : Obj' → Obj' → Set (ℓa ⊔ ℓb)
|
Arr : Object → Object → Set (ℓa ⊔ ℓb)
|
||||||
Arr (A , B) (A' , B') = Σ[ f ∈ (A → A') ] ({x : A} → B x → B' (f x))
|
Arr ((A , _) , B) ((A' , _) , B') = Σ[ f ∈ (A → A') ] ({x : A} → proj₁ (B x) → proj₁ (B' (f x)))
|
||||||
one : {o : Obj'} → Arr o o
|
𝟙 : {A : Object} → Arr A A
|
||||||
proj₁ one = λ x → x
|
proj₁ 𝟙 = λ x → x
|
||||||
proj₂ one = λ b → b
|
proj₂ 𝟙 = λ b → b
|
||||||
_∘_ : {a b c : Obj'} → Arr b c → Arr a b → Arr a c
|
_∘_ : {a b c : Object} → Arr b c → Arr a b → Arr a c
|
||||||
(g , g') ∘ (f , f') = g Function.∘ f , g' Function.∘ f'
|
(g , g') ∘ (f , f') = g Function.∘ f , g' Function.∘ f'
|
||||||
_⟨_∘_⟩ : {a b : Obj'} → (c : Obj') → Arr b c → Arr a b → Arr a c
|
|
||||||
c ⟨ g ∘ f ⟩ = _∘_ {c = c} g f
|
|
||||||
|
|
||||||
module _ {A B C D : Obj'} {f : Arr A B} {g : Arr B C} {h : Arr C D} where
|
|
||||||
isAssociative : (D ⟨ h ∘ C ⟨ g ∘ f ⟩ ⟩) ≡ D ⟨ D ⟨ h ∘ g ⟩ ∘ f ⟩
|
|
||||||
isAssociative = Σ≡ refl refl
|
|
||||||
|
|
||||||
module _ {A B : Obj'} {f : Arr A B} where
|
|
||||||
isIdentity : B ⟨ f ∘ one ⟩ ≡ f × B ⟨ one {B} ∘ f ⟩ ≡ f
|
|
||||||
isIdentity = (Σ≡ refl refl) , Σ≡ refl refl
|
|
||||||
|
|
||||||
|
|
||||||
RawFam : RawCategory (lsuc (ℓa ⊔ ℓb)) (ℓa ⊔ ℓb)
|
RawFam : RawCategory (lsuc (ℓa ⊔ ℓb)) (ℓa ⊔ ℓb)
|
||||||
RawFam = record
|
RawFam = record
|
||||||
{ Object = Obj'
|
{ Object = Object
|
||||||
; Arrow = Arr
|
; Arrow = Arr
|
||||||
; 𝟙 = one
|
; 𝟙 = λ { {A} → 𝟙 {A = A}}
|
||||||
; _∘_ = λ {a b c} → _∘_ {a} {b} {c}
|
; _∘_ = λ {a b c} → _∘_ {a} {b} {c}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
open RawCategory RawFam hiding (Object ; 𝟙)
|
||||||
|
|
||||||
|
isAssociative : IsAssociative
|
||||||
|
isAssociative = Σ≡ refl refl
|
||||||
|
|
||||||
|
isIdentity : IsIdentity λ { {A} → 𝟙 {A} }
|
||||||
|
isIdentity = (Σ≡ refl refl) , Σ≡ refl refl
|
||||||
|
|
||||||
instance
|
instance
|
||||||
isCategory : IsCategory RawFam
|
isCategory : IsCategory RawFam
|
||||||
isCategory = record
|
isCategory = record
|
||||||
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {D = D} {f} {g} {h}
|
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {A} {B} {C} {D} {f} {g} {h}
|
||||||
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
||||||
; arrowsAreSets = {!!}
|
; arrowsAreSets = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
|
Loading…
Reference in a new issue