Prove associativity for natural transformations

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-16 12:24:58 +01:00
parent b8994b8f4a
commit a64e2484e3

View file

@ -9,6 +9,7 @@ import Cubical.GradLemma
module UIP = Cubical.GradLemma
open import Cubical.Sigma
open import Cubical.NType
open import Cubical.NType.Properties
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
module Nat = Data.Nat
@ -125,10 +126,18 @@ module _ {c c' d d' : Level} { : Category c c'} {𝔻 : Cat
θ = proj₁ θ'
η = proj₁ η'
ζ = proj₁ ζ'
θNat = proj₂ θ'
ηNat = proj₂ η'
ζNat = proj₂ ζ'
L : NaturalTransformation A D
L = (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ'))
R : NaturalTransformation A D
R = (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
_g⊕f_ = _:⊕:_ {A} {B} {C}
_h⊕g_ = _:⊕:_ {B} {C} {D}
:assoc: : (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ')) (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
:assoc: = Σ≡ (funExt (λ _ assoc)) {!!}
:assoc: : L R
:assoc: = lemSig (naturalIsProp {F = A} {D})
L R (funExt (λ x assoc))
where
open IsCategory (isCategory 𝔻)